Skip to main content

Advertisement

Log in

Differentiation of Honey from Melipona Species Using Differential Scanning Calorimetry

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) was used to study the thermal behavior of Colombian honeys produced by the honey-bee Apis mellifera and by three species of stingless bees: Melipona fuscipes, Melipona favosa favosa, and Melipona compressipes. The honey samples were collected every 2 months over the course of year (August 2014 to August 2015). Up to four thermal transitions (trs1–trs4a, trs4b) were found in the honey samples: M. fuscipes (trs1–trs4a), M. favosa (trs1–trs4a, trs4b), M. compressipes (trs1, trs3, trs4a), and A. mellifera (trs1, trs3, trs4a). Statistical analyses showed significant differences in enthalpies of each transition between species; therefore, DSC analysis can be used as a finger-print to differentiate the honeys of species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmed ST, Prabhu GS, Raghavan V, Ngadi M (2007) Physico-chemical, rheological, calorimetric and dielectric behavior of selected Indian honey. J Food Eng 79(4):1207–1213. https://doi.org/10.1016/j.jfoodeng.2006.04.048

    Article  CAS  Google Scholar 

  • Bentabol M, Hernández AZ, Rodríguez B, Rodríguez E, Díaz C (2011) Differentiation of blossom and honeydew honeys using multivariate analysis on the physicochemical parameters and sugar composition. Food Chem 126(2):664–672. https://doi.org/10.1016/j.foodchem.2010.11.003

    Article  Google Scholar 

  • Bentabol M, Hernández AZ, Rodríguez B, Rodríguez E, Díaz C (2014) Physicochemical characteristics of minor monofloral honeys from Tenerife, Spain. Food Sci Technol 55(2):572–578. https://doi.org/10.1016/j.lwt.2013.09.024

    Google Scholar 

  • Bijlsma L, De Bruijn LM, Martens E, Sommeijer M (2006) Water content of stingless bee honeys (Apidae, Meliponini): interspecific variation and comparison with honey of Apis mellifera. Apidologie 37:480–486

    Article  Google Scholar 

  • Bogdanov S, Vit P, Kilchenmann V (1996) Sugar profiles and conductivity of stingless bee honeys from Venezuela. Apidologie 27(6):445–450

    Article  CAS  Google Scholar 

  • Bruylants G, Wouters J, Michaux C (2005) Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12(17):2011–2020

    Article  CAS  Google Scholar 

  • Can Z, Yildiz O, Sahin H, Turumtay EA, Silici S, Kolayli S (2015) An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 180:133–141. https://doi.org/10.1016/j.foodchem.2015.02.024

    Article  CAS  Google Scholar 

  • Cordella C, Antinelli JF, Aurieres C, Faucon JP, Cabrol-Bass D, Sbirrazzuoli N (2002) Use of differential scanning calorimetry (DSC) as a new technique for detection of adulteration in honeys. 1. Study of adulteration effect on honey thermal behavior. J Agric Food Chem 50(1):203–208

    Article  CAS  Google Scholar 

  • Chakir A, Romane A, Marcazzan GL, Ferrazzi P (2011) Physicochemical properties of some honeys produced from different plants in Morocco. Arab J Chem. https://doi.org/10.1016/j.arabjc.2011.10.013

  • Dardón MJ, Maldonado C, Enríquez E (2013) “The pot-honey of Guatemalan bees.” In pot honey, edited by Patricia Vit, Silvia R. M. Pedro and David Roubik, 395-408. Springer New York

  • de Almeida-Muradian, Ligia Bicudo (2013) “Tetragonisca angustula pot-honey compared to Apis mellifera honey from Brazil.” In pot-honey, edited by Patricia Vit, Silvia R. M. Pedro and David Roubik, 375–382. Springer New York

  • Fahim H, Dasti JI, Ihsan A, Ahmed S, Nadeem M (2014) Physico-chemical analysis and antimicrobial potential of Apis dorsata, Apis mellifera and Ziziphus jujube honey samples from Pakistan. Asian Pac J Trop Biomed 4(8):633–641. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0095

  • Fuenmayor CA, Díaz AC, Zuluaga CM, Quicazán MC (2013) Honey of Colombian stingless bees: nutritional characteristics and physicochemical quality indicators. In: pot-honey, edited by Patricia Vit, Silvia R. M. Pedro and David Roubik. Springer New York, pp 383–394

  • Gianelli MP, Ponce MC, Venegas C (2010) Volatile compounds in honey produced in the Central Valley of Ñuble Province, Chile. Chil J Agric Res 70:75–84

    Google Scholar 

  • Guerrini A, Bruni R, Maietti S, Poli F, Rossi D, Paganetto G, Muzzoli M, Scalvenzi L, Sacchetti G (2009) Ecuadorian stingless bee (Meliponinae) honey: a chemical and functional profile of an ancient health product. Food Chem 114(4):1413–1420. https://doi.org/10.1016/j.foodchem.2008.11.023

    Article  CAS  Google Scholar 

  • Hurtta M, Pitkänen I, Knuutinen J (2004) Melting behaviour of D-sucrose, D-glucose and D-fructose. Carbohydr Res 339(13):2267–2273. https://doi.org/10.1016/j.carres.2004.06.022

  • Johnson CM (2013) Differential scanning calorimetry as a tool for protein folding and stability. Arch Biochem Biophys 531(1–2):100–109. https://doi.org/10.1016/j.abb.2012.09.008

    Article  CAS  Google Scholar 

  • Kántor Z, Pitsi G, Thoen J (1999) Glass transition temperature of honey as a function of water content as determined by differential scanning calorimetry. J Agric Food Chem 47(6):2327–2330. https://doi.org/10.1021/jf981070g

    Article  Google Scholar 

  • Lazarević KB, Andrić F, Trifković J, Tešić Ž, Dušanka M (2012) Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chem 132(4):2060–2064. https://doi.org/10.1016/j.foodchem.2011.12.048

    Article  Google Scholar 

  • Lazaridou A, Biliaderis CG, Bacandritsos N, Sabatini AG (2004) Composition, thermal and rheological behaviour of selected Greek honeys. J Food Eng 64(1):9–21. https://doi.org/10.1016/j.jfoodeng.2003.09.007

    Article  Google Scholar 

  • Lee JW, Thomas LC, Shelly JS (2011) Investigation of the heating rate dependency associated with the loss of crystalline structure in sucrose, glucose, and fructose using a thermal analysis approach (part I). J Agr Food Chem 59(2):684–701. https://doi.org/10.1021/jf1042344

    Article  CAS  Google Scholar 

  • Lupano CE (1997) DSC study of honey granulation stored at various temperatures. Food Res Int 30(9):683–688. https://doi.org/10.1016/S0963-9969(98)00030-1

    Article  CAS  Google Scholar 

  • Lyubarev AE, Kurganov BI (2000) Analysis of DSC data relating to proteins undergoing irreversible thermal denaturation. J Therm Anal Calorim 62(1):51–62. https://doi.org/10.1023/A:1010102525964

    Article  CAS  Google Scholar 

  • Martinez JC, Viguera AR, Serrano L, Filimonov VV, Mateo PL (1998) The DSC data analysis for small, single-domain proteins. Application to the SH3 domain. Reac Func Polym 36(3):221–225. https://doi.org/10.1016/S1381-5148(97)00088-6

    Article  CAS  Google Scholar 

  • Michener CD (2007) “The importance of bees.” In The bees of the world, 953. Baltimore: Johns Hopkins University Press

  • Mizuno M, Pikal MJ (2013) Is the pre-Tg DSC endotherm observed with solid state proteins associated with the protein internal dynamics? Investigation of bovine serum albumin by solid state hydrogen/deuterium exchange. Eur J Pharm Biopharm 85(2):170–176. https://doi.org/10.1016/j.ejpb.2013.04.019

    Article  CAS  Google Scholar 

  • Özcan MM, Ölmez Ç (2014) Some qualitative properties of different monofloral honeys. Food Chem 163:212–218. https://doi.org/10.1016/j.foodchem.2014.04.072

    Article  Google Scholar 

  • Pasini F, Gardini S, Marcazzan GL, Caboni MF (2013) Buckwheat honeys: screening of composition and properties. Food Chem 141(3):2802–2811. https://doi.org/10.1016/j.foodchem.2013.05.102

    Article  CAS  Google Scholar 

  • Perez R, Sanchez AC, Calvo RM, Tadeo JL (2002) Analysis of volatiles from Spanish honeys by solid-phase microextraction and gas chromatography-mass spectrometry. J Agric Food Chem 50(9):2633–2637

    Article  CAS  Google Scholar 

  • Piasenzotto L, Gracco L, Conte L (2003) Solid phase microextraction (SPME) applied to honey quality control. J Sci Food Agr 83(10):1037–1044. https://doi.org/10.1002/jsfa.1502

    Article  CAS  Google Scholar 

  • Rojas-Aguilar A, Ginez-Carbajal F, Orozco-Guareńo E, Flores-Segura H (2005) Measurement of enthalpies of vaporization of volatile heterocyclic compounds by DSC. J Therm Anal Calorim 79(1):95–100. https://doi.org/10.1007/s10973-004-0568-3

    Article  CAS  Google Scholar 

  • Serra BJ, Coll FV (2003) Flavour index and aroma profiles of fresh and processed honeys. J. Sci. Food Agr. 83(4):275–282. https://doi.org/10.1002/jsfa.1308

    Article  Google Scholar 

  • Skoog DA, West DM, Holler FJ (1997) Fundamentos de química analítica. 2 ed. Vol. 2

  • Soto VC, Maldonado IB, Jofré VP, Galmarini CR, Silva MF (2015) Direct analysis of nectar and floral volatile organic compounds in hybrid onions by HS-SPME/GC–MS: relationship with pollination and seed production. Microchem J 122:110–118. https://doi.org/10.1016/j.microc.2015.04.017

    Article  CAS  Google Scholar 

  • Tornuk F, Karaman S, Ozturk I, Toker OS, Tastemur B, Sagdic O, Dogan M, Kayacier A (2013) Quality characterization of artisanal and retail Turkish blossom honeys: determination of physicochemical, microbiological, bioactive properties and aroma profile. Ind Crop Prod 46:124–131. https://doi.org/10.1016/j.indcrop.2012.12.042

    Article  CAS  Google Scholar 

  • Torres A, Hoffmann W, Lamprecht I (2007) Thermal investigations of a nest of the stingless bee Tetragonisca angustula Illiger in Colombia. Thermochim Acta 458(1–2):118–123. https://doi.org/10.1016/j.tca.2007.01.024

  • Torres A, Garedew A, Schmolz E, Lamprecht I (2004) Calorimetric investigation of the antimicrobial action and insight into the chemical properties of “angelita” honey—a product of the stingless bee Tetragonisca angustula from Colombia. Thermochim Acta 415(1–2):107–113. https://doi.org/10.1016/j.tca.2003.06.005

  • Venir E, Spaziani E, Maltini E (2010) Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chem 122(2):410–415. https://doi.org/10.1016/j.foodchem.2009.04.012

    Article  CAS  Google Scholar 

  • Vit P (2013) Melipona favosa pot-honey from Venezuela. In: pot honey, edited by Patricia Vit, Silvia R. M. Pedro and David Roubik. Springer, New York pp. 363–373

  • Vit P, Oddo L, Persano M, Marano L, Salas de Mejias E (1998) Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie 29(5):377–389

    Article  CAS  Google Scholar 

  • Vit P, Vargas O, López T, Maza F (2015) Meliponini biodiversity and medicinal uses of pot-honey from El Oro province in Ecuador. Emir J Food Agric 27(6):502–506

    Article  Google Scholar 

  • Wedmore E (1995) The accurate determination of the water content of honeys. Bee World 36:197–206

    Article  Google Scholar 

  • Wen J, Arthur K, Chemmalil L, Muzammil S, Gabrielson J, Jiang Y (2012) Applications of differential scanning calorimetry for thermal stability analysis of proteins: qualification of DSC. J Pharm Sci 101(3):955–964. https://doi.org/10.1002/jps.22820

    Article  CAS  Google Scholar 

  • Wolski T, Tambor K, Rybak H, BogdanKêdzia (2006) Identification of honey volatile components by solid phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS). J Apc Sci 50 (2):115–126

  • Yücel Y, ˘lu Sultanog P (2013) Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Bioscience 1:16–25. https://doi.org/10.1016/j.fbio.2013.02.001

    Article  Google Scholar 

  • Yutaka I (1991) Thermal denaturation of proteins II. Hitachi High-Technologies. Available from http://www.hitachi-hightech.com/global/

  • Zhou J, Suo Z, Zhao P, Cheng N, Gao H, Zhao J, Cao W (2013) Jujube honey from China: physicochemical characteristics and mineral contents. J Food Sci 78(3):C387–C394. https://doi.org/10.1111/1750-3841.12049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ricola Foundation (Switzerland), within the framework of the project “Stingless bees as alternative pollinators” and the Universidad de Pamplona, Vicerrectoría de Investigaciones.

Funding

This study was funded by Ricola Foundation (Switzerland) and Universidad de Pamplona (grant number NI576).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Torres.

Ethics declarations

Conflict of Interest

Author Yaneth Cardona declares that she has no conflict of interest. Author Alexandra Torres declares that she has no conflict of interest. Author Wolfgang Hoffmann declares that he has no conflict of interest. Author Ingolf Lamprecht declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardona, Y., Torres, A., Hoffmann, W. et al. Differentiation of Honey from Melipona Species Using Differential Scanning Calorimetry. Food Anal. Methods 11, 1056–1067 (2018). https://doi.org/10.1007/s12161-017-1083-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-1083-z

Keywords