Honey Adulteration Detection Using Raman Spectroscopy

Abstract

In this study, the Raman spectroscopy was used to detect honey adulterated with fructose (F), glucose (G), inverted sugar (IS), hydrolyzed inulin syrup (IN), and malt must (M). Thus, 56 samples of authentic honeys (acacia, sunflower, tilia, polyfloral, and honeydew) and 900 adulterated samples (with 5, 10, 20, 30, 40, and 50% fructose, glucose, inverted sugar, malt must, and hydrolyzed inulin syrup) were analyzed. The classification of honey authenticity has been made using the partial least square linear discriminant analysis (PLS-LDA), and a total accuracy of 96.54% (authentic honey vs. adulterated honey) was observed, while in the case of adulterated honey, a total accuracy of 90.00% was observed, respectively. The determination of the adulterant agent concentration has been made using partial least squares regression (PLSR) and principal component regression (PCR) methods. The proposed method can be considered easy and rapid for honey adulteration detection to provide continuous in-line information.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdi H (2003) Partial least square (PLS) regression. Encyclopedia of social sciences research methods. Thousand Oaks (CA): Sage (pp. 792-795). https://doi.org/10.4135/9781412950589.n690

  2. Aliakbarzadeh G, Parastar H, Sereshti H (2016) Crossmark. Chemom Intell Lab Syst 158:165–173. https://doi.org/10.1016/j.chemolab.2016.09.002

    CAS  Article  Google Scholar 

  3. Bázár G, Romvári R, Szabó A, Somogyi T, Éles V, Tsenkova R (2016) NIR detection of honey adulteration reveals differences in water spectral pattern. Food Chem 194:873–880. https://doi.org/10.1016/j.foodchem.2015.08.092

    Article  Google Scholar 

  4. Chen Q, Qi S, Li H, Han X, Ouyang Q, Zhao J (2014) Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations. Spectrochim Acta A Mol Biomol Spectrosc 131:177–182. https://doi.org/10.1016/j.saa.2014.04.071

    Article  Google Scholar 

  5. Çinar SB, Ekşi A, Coşkun I (2014) Carbon isotope ratio (13C/12C) of pine honey and detection of HFCS adulteration. Food Chem 157:10–13. https://doi.org/10.1016/j.foodchem.2014.02.006

    Article  Google Scholar 

  6. Corvucci F, Nobili L, Melucci D, Grillenzoni FV (2015) The discrimination of honey origin using melissopalynology and Raman spectroscopy techniques coupled with multivariate analysis. Food Chem 169:297–304. https://doi.org/10.1016/j.foodchem.2014.07.122

    CAS  Article  Google Scholar 

  7. Gan Z, Yang Y, Li J, Wen X, Zhu M, Jiang Y, Ni Y (2015) Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey. J Food Eng 178:151–158. https://doi.org/10.1016/j.jfoodeng.2016.01.016

    Article  Google Scholar 

  8. Goodacre R, Radovic BS, Anklam E (2002) Progress toward the rapid nondestructive assessment of the floral origin of European honey using dispersive Raman spectroscopy. Appl Spectrosc 56(4):521–527. https://doi.org/10.1366/0003702021954980

    CAS  Article  Google Scholar 

  9. Guelpa A, Marini F, du Plessis A, Slabbert R, Manley M (2016) Verification of authenticity of South African honey and fraud detection using NIR spectroscopy. Food Control 73:1388–1396. https://doi.org/10.1016/j.foodcont.2016.11.002

    Article  Google Scholar 

  10. Li S, Shan Y, Zhu X, Zhang X, Ling G (2012) Detection of honey adulteration by high fructose corn syrup and maltose syrup using Raman spectroscopy. J Food Compos Anal 28(1):69–74. https://doi.org/10.1016/j.jfca.2012.07.006

    Article  Google Scholar 

  11. Li S, Zhang X, Shan Y, Su D, Ma Q, Wen R, Li J (2017) Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Food Chem 218:231–236. https://doi.org/10.1016/j.foodchem.2016.08.105

    CAS  Article  Google Scholar 

  12. Oroian M (2012) Physicochemical and rheological properties of Romanian honeys. Food Biophys 7(4):296–307. https://doi.org/10.1007/s11483-012-9268-x

    Article  Google Scholar 

  13. Oroian M (2015) Influence of temperature, frequency and moisture content on honey viscoelastic parameters—neural networks and adaptive neuro-fuzzy inference system prediction. LWT Food Sci Technol 63(2):1309–1316. https://doi.org/10.1016/j.lwt.2015.04.051

    CAS  Article  Google Scholar 

  14. Oroian M, Amariei S, Rosu A, Gutt G (2015) Classification of unifloral honeys using multivariate analysis. J Essent Oil Res 27(6):533–544. https://doi.org/10.1080/10412905.2015.1073183

    CAS  Article  Google Scholar 

  15. Owen CA, Notingher I, Hill R, Stevens M, Hench LL (2006) Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. J Mater Sci Mater Med 17:1019–1023. https://doi.org/10.1007/s10856-006-0438-6

    CAS  Article  Google Scholar 

  16. Özbalci B, Boyaci IH, Topcu A, Kadilar C, Tamer U (2013) Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chem 136(3–4):1444–1452. https://doi.org/10.1016/j.foodchem.2012.09.064

    Article  Google Scholar 

  17. Shafiee S, Polder G, Minaei S, Moghadam-Charkari N, Van Ruth S, Kuś PM (2016) Detection of Honey Adulteration using Hyperspectral Imaging. IFAC-PapersOnLine 49(16):311-314. https://doi.org/10.1016/j.ifacol.2016.10.057

  18. Simsek A, Bilsel M, Goren AC (2012) 13C/12C pattern of honey from Turkey and determination of adulteration in commercially available honey samples using EA-IRMS. Food Chem 130(4):1115–1121. https://doi.org/10.1016/j.foodchem.2011.08.017

    CAS  Article  Google Scholar 

  19. Wang S, Guo Q, Wang L, Lin L, Shi H, Cao H, Cao B (2015) Detection of honey adulteration with starch syrup by high performance liquid chromatography. Food Chem 172:669–674. https://doi.org/10.1016/j.foodchem.2014.09.044

    CAS  Article  Google Scholar 

  20. Yuan X, Huang B, Ge Z, Song Z (2016) Double locally weighted principal component regression for soft sensor with sample selection under supervised latent structure. Chemom Intell Lab Syst 153:116–125. https://doi.org/10.1016/j.chemolab.2016.02.014

    CAS  Article  Google Scholar 

  21. Zhu X, Li S, Shan Y, Zhang Z, Li G, Su D, Liu F (2010) Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. J Food Eng 101(1):92–97. https://doi.org/10.1016/j.jfoodeng.2010.06.014

    CAS  Article  Google Scholar 

Download references

Funding

Mircea Oroian, Sergiu Paduret, and Sorina Ropciuc have been financed by the National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, grant number PN-II-RU-TE-2014-4-0110.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mircea Oroian.

Ethics declarations

Conflict of Interest

Mircea Oroian declares that he has no conflict of interest. Sorina Ropciuc declares that she has no conflict of interest. Sergiu Paduret declares that he has no conflict of interest.

Ethical Approval

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oroian, M., Ropciuc, S. & Paduret, S. Honey Adulteration Detection Using Raman Spectroscopy. Food Anal. Methods 11, 959–968 (2018). https://doi.org/10.1007/s12161-017-1072-2

Download citation

Keywords

  • Honey
  • Adulteration
  • Raman spectra
  • Statistical analysis