Skip to main content
Log in

Label-Free Shotgun Proteomics Approach to Characterize Muscle Tissue from Farmed and Wild European Sea Bass (Dicentrarchus labrax)

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Sea bass represents one of the main fish products in the market. Most of it comes from farming and is bred in different conditons with respect to the wild fish. Differences may thus be expected. In this study, a proteomic profile of farmed and wild sea bass samples was performed, employing a fractionation strategy where peptide samples were first separated by 2D chromatography. The peptides were finally analyzed by shotgun proteomics workflow combined to tandem MS. The chosen fractionation approach was successful allowing to greatly improve the fish muscle protein characterization and detect some interesting differences between wild fish and farmed sea bass. Sixty-nine proteins were overexpressed in farmed fish samples, whereas 182 proteins were underexpressed. Some of these proteins could be related to the breeding conditions and the diet with which fishes were fed, thus providing some interesting results for assessing food quality based on a comprehensive proteomic study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addis MF (2013) Farmed and wild fish. In: Toldrá F, Nollet LML (eds) Proteomics in foods. Springer US, Boston, pp 181–203

    Chapter  Google Scholar 

  • Addis MF, Cappuccinelli R, Tedde V et al (2010) Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages. Aquaculture 309:245–252. doi:10.1016/j.aquaculture.2010.08.022

    Article  CAS  Google Scholar 

  • Alami-Durante H, Cluzeaud M, Duval C et al (2014) Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects. Br J Nutr 112:674–687. doi:10.1017/S0007114514001391

    Article  CAS  Google Scholar 

  • Alasalvar C, Taylor KD, Zubcov E et al (2002) Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food Chem 79:145–150. doi:10.1016/S0308-8146(02)00122-X

    Article  CAS  Google Scholar 

  • Bhatia VN, Perlman DH, Costello CE, McComb ME (2009) Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. Anal Chem 81:9819–9823. doi:10.1021/ac901335x

    Article  CAS  Google Scholar 

  • Bosworth CA, Chou C-W, Cole RB, Rees BB (2005) Protein expression patterns in zebrafish skeletal muscle: initial characterization and the effects of hypoxic exposure. Proteomics 5:1362–1371. doi:10.1002/pmic.200401002

    Article  CAS  Google Scholar 

  • Brownridge P, de Mello LV, Peters M et al (2009) Regional variation in parvalbumin isoform expression correlates with muscle performance in common carp (Cyprinus carpio). J Exp Biol 212:184–193. doi:10.1242/jeb.021857

    Article  CAS  Google Scholar 

  • Capriotti AL, Caruso G, Cavaliere C et al (2013a) Proteome investigation of the non-model plant pomegranate (Punica granatum L.) Anal Bioanal Chem 405:9301–9309. doi:10.1007/s00216-013-7382-3

    Article  CAS  Google Scholar 

  • Capriotti AL, Cavaliere C, Foglia P et al (2013b) Proteomic platform for the identification of proteins in olive (Olea europaea) pulp. Anal Chim Acta 800:36–42. doi:10.1016/j.aca.2013.09.014

    Article  CAS  Google Scholar 

  • Capriotti AL, Cavaliere C, Piovesana S et al (2016) Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem:1–9. doi:10.1007/s00216-016-9303-8

  • Costa R, Albergamo A, Piparo M et al (2017) Multidimensional gas chromatographic techniques applied to the analysis of lipids from wild-caught and farmed marine species. Eur J Lipid Sci Technol 119:1600043. doi:10.1002/ejlt.201600043

    Article  Google Scholar 

  • Cox J, Hein MY, Luber CA, Paron I (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13:2513–2526. doi:10.1074/mcp.M113.031591

    Article  CAS  Google Scholar 

  • Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. doi:10.1038/nbt.1511

    Article  CAS  Google Scholar 

  • D’Attoma A, Grivel C, Heinisch S (2012) On-line comprehensive two-dimensional separations of charged compounds using reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography. Part I: Orthogonality and practical peak capacity considerations. J Chromatogr A 1262:148–159. doi:10.1016/j.chroma.2012.09.028

    Article  Google Scholar 

  • Deeb SJ, D’Souza RCJ, Cox J et al (2012) Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by their protein expression profiles. Mol Cell Proteomics 11:77–89. doi:10.1074/mcp.M111.015362

    Article  CAS  Google Scholar 

  • Diez A, Menoyo D, Pe S et al (2007) Conjugated linoleic acid affects lipid composition , metabolism , and gene expression in gilthead sea bream ( Sparus aurata L ) 1–3. J Nutr 137:1363–1369

    CAS  Google Scholar 

  • Domon B (2006) Mass spectrometry and protein analysis. Science 312:212–217. doi:10.1126/science.1124619

    Article  CAS  Google Scholar 

  • Fercha A, Capriotti AL, Caruso G et al (2013) Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. J Proteome 91:486–499. doi:10.1016/j.jprot.2013.08.010

    Article  CAS  Google Scholar 

  • Focant B, Vandewalle P, Huriaux F (2003) Expression of myofibrillar proteins and parvalbumin isoforms during the development of a flatfish, the common sole Solea solea: comparison with the turbot Scophthalmus maximus. Comp Biochem Physiol B Biochem Mol Biol 135:493–502. doi:10.1016/S1096-4959(03)00116-7

    Article  CAS  Google Scholar 

  • FAO (2016) The state of world Fisheries and Aquaculture 2016. Contributing to food security andnutrition for all. Rome, p 200

  • Forné I, Abián J, Cerdà J (2010) Fish proteome analysis: model organisms and non-sequenced species. Proteomics 10:858–872. doi:10.1002/pmic.200900609

    Article  Google Scholar 

  • Gebriel M, Uleberg K-E, Larssen E et al (2010) Cod (Gadus morhua) muscle proteome cataloging using 1D-PAGE protein separation, nano-liquid chromatography peptide fractionation, and linear trap quadrupole (LTQ) mass spectrometry. J Agric Food Chem 58:12307–12312. doi:10.1021/jf103009r

    Article  CAS  Google Scholar 

  • Griesmeier U, Vázquez-Cortès S, Bublin M et al (2010) Expression levels of parvalbumins determine allergenicity of fish species. Allergy 65:191–198. doi:10.1111/j.1398-9995.2009.02162.x

    Article  CAS  Google Scholar 

  • Ghaedi G, Keyvanshokooh S, Akhlaghi M (2016) Proteomic analysis of muscle tissue from rainbow trout (Oncorhynchus mykiss) fed dietary β-glucan. Iran J Vet Res 17:184–189

    Google Scholar 

  • Hamelin M, Sayd T, Chambon C et al (2006) Proteomic analysis of ovine muscle hypertrophy. J Anim Sci 84:3266. doi:10.2527/jas.2006-162

    Article  CAS  Google Scholar 

  • Kikuchi K, Yamashita M, Watabe S, Aida K (1995) The warm temperature acclimation-related 65-kDa protein, Wap65, in goldfish and its gene expression. J Biol Chem 270:17087–17092. doi:10.1074/jbc.270.29.17087

    Article  CAS  Google Scholar 

  • Kuehn A, Swoboda I, Arumugam K et al (2014) Fish allergens at a glance: variable allergenicity of parvalbumins, the major fish allergens. Front Immunol. doi:10.3389/fimmu.2014.00179

  • Monti G, De Napoli L, Mainolfi P et al (2005) Monitoring food quality by microfluidic electrophoresis, gas chromatography, and mass spectrometry techniques: effects of aquaculture on the sea bass ( Dicentrarchus labrax). Anal Chem 77:2587–2594. doi:10.1021/ac048337x

    Article  CAS  Google Scholar 

  • Morais S, Silva T, Cordeiro O et al (2012) Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar). BMC Genomics 13:448. doi:10.1186/1471-2164-13-448

    Article  CAS  Google Scholar 

  • Morzel M, Chambon C, Lefèvre F et al (2006) Modifications of trout ( Oncorhynchus mykiss ) muscle proteins by preslaughter activity. J Agric Food Chem 54:2997–3001. doi:10.1021/jf0528759

    Article  CAS  Google Scholar 

  • Piovesana S, Capriotti AL, Caruso G et al (2016a) Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 1428:193–201. doi:10.1016/j.chroma.2015.07.049

    Article  CAS  Google Scholar 

  • Piovesana S, Capriotti AL, Cavaliere C et al (2016b) New magnetic graphitized carbon black TiO 2 composite for phosphopeptide selective enrichment in shotgun phosphoproteomics. Anal Chem 88:12043–12050. doi:10.1021/acs.analchem.6b02345

    Article  CAS  Google Scholar 

  • Reddish JM, St-Pierre N, Nichols A et al (2008) Proteomic analysis of proteins associated with body mass and length in yellow perch, Perca flavescens. Proteomics 8:2333–2343. doi:10.1002/pmic.200700533

    Article  CAS  Google Scholar 

  • Sauer S, Luge T (2015) Nutriproteomics: facts, concepts, and perspectives. Proteomics 15:997–1013. doi:10.1002/pmic.201400383

    Article  CAS  Google Scholar 

  • Stein DR, Hu X, Mccorrister SJ et al (2013) High pH reversed-phase chromatography as a superior fractionation scheme compared to off-gel isoelectric focusing for complex proteome analysis. Proteomics 13:2956–2966. doi:10.1002/pmic.201300079

    CAS  Google Scholar 

  • Tacchi L, Secombes CJ, Bickerdike R et al (2012) Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics 13:363. doi:10.1186/1471-2164-13-363

    Article  CAS  Google Scholar 

  • Tahmasebi-Kohyani A, Keyvanshokooh S, Nematollahi A et al (2012) Effects of dietary nucleotides supplementation on rainbow trout (Oncorhynchus mykiss) performance and acute stress response. Fish Physiol Biochem 38:431–440. doi:10.1007/s10695-011-9524-x

    Article  CAS  Google Scholar 

  • Tedesco S, Mullen W, Cristobal S (2014) High-throughput proteomics: a new tool for quality and safety in fishery products. Curr Protein Pept Sci 15:118–133. doi:10.2174/1389203715666140221120219

    Article  CAS  Google Scholar 

  • Terova G, Pisanu S, Roggio T et al (2014) Proteomic profiling of sea bass muscle by two-dimensional gel electrophoresis and tandem mass spectrometry. Fish Physiol Biochem 40:311–322. doi:10.1007/s10695-013-9855-x

    Article  CAS  Google Scholar 

  • Vizcaíno JA, Csordas A, Del-Toro N et al (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–D456. doi:10.1093/nar/gkv1145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Laura Capriotti.

Ethics declarations

Funding

This research was supported by the framework of the Research Project “PRIN 2012”: assessment of quality and safety of Mediterranean seafoods by “omics” sciences, supported by the Italian Ministry of University and Scientific Research, no. 2012TLC44W.

Conflict of Interest

Riccardo Zenezini Chiozzi declares that he has no conflict of interest. Anna Laura Capriotti declares that she has no conflict of interest. Chiara Cavaliere declares that she has no conflict of interest. Giorgia La Barbera declares that she has no conflict of interest. Carmela Maria Montone declares that she has no conflict of interest. Susy Piovesana declares that she has no conflict of interest. Aldo Laganà declares that he has no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Not applicable.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiozzi, R.Z., Capriotti, A.L., Cavaliere, C. et al. Label-Free Shotgun Proteomics Approach to Characterize Muscle Tissue from Farmed and Wild European Sea Bass (Dicentrarchus labrax). Food Anal. Methods 11, 292–301 (2018). https://doi.org/10.1007/s12161-017-0999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0999-7

Keywords

Navigation