Skip to main content

Examination of the Varied and Changing Ethanol Content of Commercial Kombucha Products


Kombucha is a fermented beverage made by mixing tea and sugar with bacteria and yeast. When kombucha products contain higher than 0.5% (v/v) alcohol, the legal limit for non-alcoholic drinks, they are classified as alcoholic beverages and are subject to relevant federal and state regulations. An efficient headspace gas chromatography technique utilizing an ionic liquid stationary phase is developed to accurately determine the ethanol content in 18 commercial kombucha samples. The range of ethanol in these products was 1.12–2.00% (v/v). The ethanol concentration of two batches of kombucha was analyzed over a period of 60 days under two different conditions. A significant increase in ethanol content of these samples was observed at 4 and 22 °C. The method accuracy was validated by analyzing 3 NIST ethanol-water standard reference solutions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Alcohol and Tobacco Tax and Trade Bureau (2016) Kombucha information and resources. Accessed 25 April 2017

  2. Blanc PJ (1996) Characterization of the tea fungus metabolites. Biotechnol Lett 18(2):139–142

    CAS  Article  Google Scholar 

  3. Cheng C, Liu S, Mueller BJ, Yan Z (2010) A generic static headspace gas chromatography method for determination of residual solvents in drug substance. J Chromatogr A 1217(41):6413–6421

    CAS  Article  Google Scholar 

  4. Dufresne C, Farnworth E (2000) Tea, kombucha, and health: a review. Food Res Int 33(6):409–421

    CAS  Article  Google Scholar 

  5. Frink LA, Armstrong DW (2016a) The utilisation of two detectors for the determination of water in honey using headspace gas chromatography. Food Chem 205:23–27

    CAS  Article  Google Scholar 

  6. Frink LA, Armstrong DW (2016b) Water determination in solid pharmaceutical products utilizing ionic liquids and headspace gas chromatography. J Pharm Sci 105(8):2288–2292

    CAS  Article  Google Scholar 

  7. Frink LA, Armstrong DW (2016c) Determination of trace water content in petroleum and petroleum products. Anal Chem 88(16):8194–8201

    CAS  Article  Google Scholar 

  8. Frink LA, Weatherly CA, Armstrong DW (2014) Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols. J Pharm Biomed Anal 94:111–117

    CAS  Article  Google Scholar 

  9. Goh W, Rosma A, Kaur B, Fazilah A, Karim A, Bhat R (2012) Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial cellulose. Int Food Res J 19(1):109–117

    CAS  Google Scholar 

  10. Greenwalt C, Ledford R, Steinkraus K (1998) Determination and characterization of the antimicrobial activity of the fermented tea kombucha. LWT-Food Sci Technol 31(3):291–296

    CAS  Article  Google Scholar 

  11. Greenwalt C, Steinkraus K, Ledford R (2000) Kombucha, the fermented tea: microbiology, composition, and claimed health effects. J Food Prot 63(7):976–981

    CAS  Article  Google Scholar 

  12. Huang K, Han X, Zhang X, Armstrong DW (2007) PEG-linked geminal dicationic ionic liquids as selective, high-stability gas chromatographic stationary phases. Anal Bioanal Chem 389(7–8):2265–2275

    CAS  Article  Google Scholar 

  13. Ibañez E, Cifuentes A (2001) New analytical techniques in food science. Crit Rev Food Sci Nutr 41(6):413–450

    Article  Google Scholar 

  14. Jayabalan R, Marimuthu S, Thangaraj P, Sathishkumar M, Binupriya AR, Swaminathan K, Yun SE (2008) Preservation of kombucha tea: effect of temperature on tea components and free radical scavenging properties. J Agric Food Chem 56(19):9064–9071

    CAS  Article  Google Scholar 

  15. Jayabalan R, Malini K, Sathishkumar M, Swaminathan K, Yun S (2010) Biochemical characteristics of tea fungus produced during kombucha fermentation. Food Sci Biotechnol 19(3):843–847

    CAS  Article  Google Scholar 

  16. Jayabalan R, Malbaša RV, Lončar ES, Vitas JS, Sathishkumar M (2014) A review on kombucha tea: microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food Saf 13(4):538–550

    Article  Google Scholar 

  17. Jeleń H, Gracka A, Myśków B (2017) Static headspace extraction with compounds trapping for the analysis of volatile lipid oxidation products. Food Anal Methods. doi:10.1007/s12161-017-0838-x

  18. Kolb B, Ettre LS (2006) Static headspace-gas chromatography: theory and practice. Wiley, Hoboken

    Book  Google Scholar 

  19. Li H, Chai X, Deng Y, Zhan H, Fu S (2009) Rapid determination of ethanol in fermentation liquor by full evaporation headspace gas chromatography. J Chromatogr A 1216(1):169–172

    CAS  Article  Google Scholar 

  20. Liu M, Li H, Zhan H (2014) A novel method for the determination of the ethanol content in soy sauce by full evaporation headspace gas chromatography. Food Anal Methods 7(5):1043–1046

    Article  Google Scholar 

  21. Mason M (1983) Ethanol determination in wine with an immobilized enzyme electrode. Am J Enol Vitic 34(3):173–175

    CAS  Google Scholar 

  22. Nummer BA (2013) Kombucha brewing under the Food and Drug Administration model food code: risk analysis and processing guidance. J Environ Health 76(4):8–12

    Google Scholar 

  23. Reiss J (1994) Influence of different sugars on the metabolism of the tea fungus. Z Lebensm Unters Forsch 198(3):258–261

    CAS  Article  Google Scholar 

  24. Reva ON, Zaets IE, Ovcharenko LP, Kukharenko OE, Shpylova SP, Podolich OV, de Vera J, Kozyrovska NO (2015) Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express 5(1):35

    Article  Google Scholar 

  25. Sievers M, Lanini C, Weber A, Schuler-Schmid U, Teuber M (1995) Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Syst Appl Microbiol 18(4):590–594

    Article  Google Scholar 

  26. Snow NH, Bullock G (2010) Novel techniques for enhancing sensitivity in static headspace extraction-gas chromatography. J Chromatogr A 1217(16):2726–2735

    CAS  Article  Google Scholar 

  27. Sreeramulu G, Zhu Y, Knol W (2000) Kombucha fermentation and its antimicrobial activity. J Agric Food Chem 48(6):2589–2594

    CAS  Article  Google Scholar 

  28. Vīna I, Semjonovs P, Linde R, Denina I (2014) Current evidence on physiological activity and expected health effects of kombucha fermented beverage. J Med Food 17(2):179–188

    Article  Google Scholar 

  29. Weatherly CA, Woods RM, Armstrong DW (2014) Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection. J Agric Food Chem 62(8):1832–1838

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge financial support from the Welch Foundation (Y0026). Moreover, we would like to thank Shimadzu Scientific Instruments for instrumental support.

Author information



Corresponding author

Correspondence to Daniel W. Armstrong.

Ethics declarations

Conflict of Interest

Mohsen Talebi declares that he has no conflict of interest. Lilian A. Frink declares that she has no conflict of interest. Rahul A. Patil declares that he has no conflict of interest. Daniel W. Armstrong declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Not applicable.

Electronic supplementary material


(DOCX 242 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Talebi, M., Frink, L.A., Patil, R.A. et al. Examination of the Varied and Changing Ethanol Content of Commercial Kombucha Products. Food Anal. Methods 10, 4062–4067 (2017).

Download citation


  • Kombucha
  • Ethanol analysis
  • Ionic liquid column
  • Headspace gas chromatography