Advertisement

Food Analytical Methods

, Volume 10, Issue 11, pp 3634–3646 | Cite as

Analytical Methods for Pectin Methylesterase Activity Determination: a Review

  • Jesús A. Salas-Tovar
  • Adriana C. Flores-Gallegos
  • Juan C. Contreras-Esquivel
  • S. Escobedo-García
  • Jesús A. Morlett-Chávez
  • Raúl Rodríguez-Herrera
Article

Abstract

Pectin methylesterase is an enzyme with an important in vivo role in plants as well as in food industry. This enzyme catalyzes the hydrolysis of methyl ester bounds in pectin which is one of the main components of cell wall in plants, producing methanol and free carboxylic groups. The effect of pectin methylesterase in food quality has been extensively studied, producing desirable effects in texture improvement as well as undesirable effects in some beverages. Likewise, the low methoxyl pectin produced by this enzyme has characteristics that contribute to formulate best quality food products. Pectin methylesterase is a ubiquitously enzyme that presents multiple isoforms, but is not only present in plants; it is also found in fungi, bacteria, and yeast, which have specific chemical and physical characteristics. The latter makes the task of analyzing the wide variety of these enzymes with its specific characteristics difficult. Based on this enzyme relevance and the aforementioned, multiple methods have been developed in order to evaluate pectin methylesterase activity with different research objectives. In this paper, the importance of the enzyme as well as advantages and drawbacks of the different methods will be discussed besides applications and evolution of these will be mentioned. Additionally, this paper will improve the understanding of the systems used in pectin methylesterase activity analysis.

Keywords

Pectin methylesterase (PME) Alcohol oxidase (AO) Pectin Methanol Carboxyl groups 

Notes

Acknowledgements

This project was financially supported by The Secretary of Agriculture, Fishing, and Livestock, through the Project FON.SEC. SAGARPA-CONACYT CV-2015-4-266936. J.A.S.T wants to thank to the Mexican National Council of Science and Technology (CONACYT) for the financial support during his postgraduate studies.

Compliance with Ethical Standards

Conflict of Interest

J.A. Salas-Tovar declares that he has no conflict of interest. A.C. Flores-Gallegos declares that she has no conflict of interest. J.C. Contreras-Esquivel declares that he has no conflict of interest. S. Escobedo-García declares that she has no conflict of interest. J.A. Morlett-Chávez declares that he has no conflict of interest. R. Rodríguez-Herrera declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Anthon GE, Barrett DM (2004) Comparison of three colorimetric reagents in the determination of methanol with alcohol oxidase. Application to the assay of pectin methylesterase. J Agric Food Chem 52:3749–3753. doi: 10.1021/jf035284w CrossRefGoogle Scholar
  2. Anthon GE, Barrett DM (2006) Characterization of the temperature activation of pectin methylesterase in green beans and tomatoes. J Agric Food Chem 54:204–211. doi: 10.1021/jf051877q CrossRefGoogle Scholar
  3. Anthon GE, Barrett DM (2008) Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: application to tomato products. Food Chem 110:239–247. doi: 10.1016/j.foodchem.2008.01.042 CrossRefGoogle Scholar
  4. Anthon GE, Barrett DM (2012) Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chem 132:915–920. doi: 10.1016/j.foodchem.2011.11.066 CrossRefGoogle Scholar
  5. Bartolome LG, Hoff JE (1972) Gas-chromatographic methods for the assay of pectin methylesterase, free methanol, and methoxy groups in plant tissues. J Agric Food Chem 20:262–266. doi: 10.1021/jf60180a007 CrossRefGoogle Scholar
  6. Bermejo-Prada A, Segovia-Bravo KA, Guignon B, Otero L (2015) Effect of hyperbaric storage at room temperature on pectin methylesterase activity and serum viscosity of strawberry juice. Innovative Food Sci Emerg Technol 30:170–176. doi: 10.1016/j.ifset.2015.06.004 CrossRefGoogle Scholar
  7. Bisswanger H (2014) Enzyme assays. Perspect Sci 1:41–55. doi: 10.1016/j.pisc.2014.02.005 CrossRefGoogle Scholar
  8. Bogra P, Kumar A, Kuhar K, Panwar S, Singh R (2013) Immobilization of tomato (Lycopersicon esculentum) pectin methylesterase in calcium alginate beads and its application in fruit juice clarification. Biotechnol Lett 35:1895–1900. doi: 10.1007/s10529-013-1278-3 CrossRefGoogle Scholar
  9. Bordenave M (1996) Analysis of pectin methyl esterases. In: Linskens HF, Jackson JF (eds) Plant Cell Wall Analysis, vol 17. Springer, Berlin, pp 165–180. doi: 10.1007/978-3-642-60989-3_10 CrossRefGoogle Scholar
  10. Bordenave M, Goldberg R (1993) Purification and characterization of pectin methylesterases from mung bean hypocotyl cell walls. Phytochemistry 33:999–1003. doi: 10.1016/0031-9422(93)85011-F CrossRefGoogle Scholar
  11. Bosch M, Cheung AY, Hepler PK (2005) Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138:1334–1346. doi: 10.1104/pp.105.059865 CrossRefGoogle Scholar
  12. Bourgault R, Bewley JD (2002) Gel diffusion assays for endo-β-mannanase and pectin methylesterase can underestimate enzyme activity due to proteolytic degradation: a remedy. Anal Biochem 300:87–93. doi: 10.1006/abio.2001.5450 CrossRefGoogle Scholar
  13. Briongos H, Illera AE, Sanz MT, Melgosa R, Beltrán S, Solaesa AG (2016) Effect of high pressure carbon dioxide processing on pectin methylesterase activity and other orange juice properties. LWT Food Sci Technol 74:411–419. doi: 10.1016/j.lwt.2016.07.069 CrossRefGoogle Scholar
  14. Cameron RG, Buslig BS, Shaw PE (1992) Adaptation of a spectrophotometric assay for pectin methylesterase to a kinetic microplate reader. J Food Sci 57:1006–1008. doi: 10.1111/j.1365-2621.1992.tb14343.x CrossRefGoogle Scholar
  15. Cameron RG, Savary BJ, Hotchkiss AT, Fishman ML, Chau HK, Baker RA, Grohmann K (2003) Separation and characterization of a salt-dependent pectin methylesterase from Citrus sinensis Var. Valencia fruit tissue. J Agric Food Chem 51:2070–2075. doi: 10.1021/jf020933+ CrossRefGoogle Scholar
  16. Cameron RG, Luzio GA, Goodner K, Williams MAK (2008) Demethylation of a model homogalacturonan with a salt-independent pectin methylesterase from citrus: I. effect of pH on demethylated block size, block number and enzyme mode of action. Carbohydr Polym 71:287–299. doi: 10.1016/j.carbpol.2007.07.007 CrossRefGoogle Scholar
  17. Cameron RG, Luzio GA, Vasu P, Savary BJ, Williams MAK (2011) Enzymatic modification of a model homogalacturonan with the thermally tolerant pectin methylesterase from citrus: 1. nanostructural characterization, enzyme mode of action, and effect of pH. J Agric Food Chem 59:2717–2724. doi: 10.1021/jf104845j CrossRefGoogle Scholar
  18. Castillejo C, de la Fuente JI, Iannetta P, Botella MÁ, Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 55:909–918. doi: 10.1093/jxb/erh102 CrossRefGoogle Scholar
  19. Castro SM, Van Loey A, Saraiva JA, Smout C, Hendrickx M (2004) Activity and process stability of purified green pepper (Capsicum annuum) pectin methylesterase. J Agric Food Chem 52:5724–5729. doi: 10.1021/jf0352071 CrossRefGoogle Scholar
  20. Castro SM, Loey AV, Saraiva JA, Smout C, Hendrickx M (2006) Identification of pressure/temperature combinations for optimal pepper (Capsicum annuum) pectin methylesterase activity. Enzym Microb Technol 38:831–838. doi: 10.1016/j.enzmictec.2005.08.009 CrossRefGoogle Scholar
  21. Compton BJ, Purdy WC (1980) Fluoral-P, a member of a selective family of reagents for aldehydes. Anal Chim Acta 119:349–357. doi: 10.1016/S0003-2670(01)93636-0 CrossRefGoogle Scholar
  22. de Assis SA, Lima DC, de Faria Oliveira OMM (2001) Activity of pectin methylesterase, pectin content and vitamin C in acerola fruit at various stages of fruit development. Food Chem 74:133–137. doi: 10.1016/S0308-8146(01)00104-2 CrossRefGoogle Scholar
  23. De Roeck A, Mols J, Duvetter T, Van Loey A, Hendrickx M (2010) Carrot texture degradation kinetics and pectin changes during thermal versus high-pressure/high-temperature processing: a comparative study. Food Chem 120:1104–1112. doi: 10.1016/j.foodchem.2009.11.060 CrossRefGoogle Scholar
  24. Denès J-M, Baron A, Renard CMGC, Péan C, Drilleau J-F (2000) Different action patterns for apple pectin methylesterase at pH 7.0 and 4.5. Carbohydr Res 327:385–393. doi: 10.1016/S0008-6215(00)00070-7 CrossRefGoogle Scholar
  25. Deytieux-Belleau C, Vallet A, Donèche B, Geny L (2008) Pectin methylesterase and polygalacturonase in the developing grape skin. Plant Physiol Biochem 46:638–646. doi: 10.1016/j.plaphy.2008.04.008 CrossRefGoogle Scholar
  26. Dixit S, Upadhyay S, Singh H, Pandey B, Chandrashekar K, Verma P (2013) Pectin methylesterase of Datura species, purification, and characterization from Datura stramonium and its application. Plant Signal Behav 8:e25681. doi: 10.4161/psb.25681 CrossRefGoogle Scholar
  27. Downie B, Dirk LMA, Hadfield KA, Wilkins TA, Bennett AB, Bradford KJ (1998) A gel diffusion assay for quantification of pectin methylesterase activity. Anal Biochem 264:149–157. doi: 10.1006/abio.1998.2847 CrossRefGoogle Scholar
  28. Duvetter T et al (2006a) Effect of temperature and high pressure on the activity and mode of action of fungal pectin methyl esterase. Biotechnol Prog 22:1313–1320. doi: 10.1021/bp060079x CrossRefGoogle Scholar
  29. Duvetter T, Fraeye I, Sila DN, Verlent I, Smout C, Hendrickx M, Van Loey A (2006b) Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions. J Agric Food Chem 54:7825–7831. doi: 10.1021/jf060013h CrossRefGoogle Scholar
  30. El-Moneim DA, Contreras R, Silva-Navas J, Gallego FJ, Figueiras AM, Benito C (2014) Pectin methylesterase gene and aluminum tolerance in Secale cereale. Environ Exp Bot 107:125–133. doi: 10.1016/j.envexpbot.2014.06.006 CrossRefGoogle Scholar
  31. Fish VB, Dustman RB (1945) The enzyme activities of pectinol A on pectin and other substances 1,2. J Am Chem Soc 67:1155–1157. doi: 10.1021/ja01223a035 CrossRefGoogle Scholar
  32. Fries M, Ihrig J, Brocklehurst K, Shevchik VE, Pickersgill RW (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. EMBO J 26:3879–3887CrossRefGoogle Scholar
  33. Giner J, Gimeno V, Espachs A, Elez P, Barbosa-Cánovas GV, Martín O (2000) Inhibition of tomato (Licopersicon esculentum Mill.) pectin methylesterase by pulsed electric fields. Innovative Food Sci Emerg Technol 1:57–67. doi: 10.1016/S1466-8564(00)00003-5 CrossRefGoogle Scholar
  34. Glinka EM, Liao Y-C (2011) Purification and partial characterisation of pectin methylesterase produced by Fusarium asiaticum. Fungal Biol 115:1112–1121. doi: 10.1016/j.funbio.2011.07.005 CrossRefGoogle Scholar
  35. Grsic-Rausch S, Rausch T (2004) A coupled spectrophotometric enzyme assay for the determination of pectin methylesterase activity and its inhibition by proteinaceous inhibitors. Anal Biochem 333:14–18. doi: 10.1016/j.ab.2004.04.042 CrossRefGoogle Scholar
  36. Gummadi S, Manoj N, Kumar DS (2007) Structural and biochemical properties of pectinases. In: Polaina J, MacCabe A (eds) Industrial Enzymes. Springer, Netherlands, pp 99–115. doi: 10.1007/1-4020-5377-0_7 CrossRefGoogle Scholar
  37. Hagerman AE, Austin PJ (1986) Continuous spectrophotometric assay for plant pectin methyl esterase. J Agric Food Chem 34:440–444. doi: 10.1021/jf00069a015 CrossRefGoogle Scholar
  38. Harholt J, Suttangkakul A, Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153:384–395. doi: 10.1104/pp.110.156588 CrossRefGoogle Scholar
  39. Hauser TR, Cummins RL (1964) Increasing sensitivity of 3-methyl-2-benzothiazolone hydrozone test for analysis of aliphatic aldehydes in air. Anal Chem 36:679–681. doi: 10.1021/ac60209a067 CrossRefGoogle Scholar
  40. Held MT, Anthon GE, Barrett DM (2015) The effects of bruising and temperature on enzyme activity and textural qualities of tomato juice. J Sci Food Agric 95:1598–1604. doi: 10.1002/jsfa.6990 CrossRefGoogle Scholar
  41. Houben K, Jolie RP, Fraeye I, Van Loey AM, Hendrickx ME (2011) Comparative study of the cell wall composition of broccoli, carrot, and tomato: structural characterization of the extractable pectins and hemicelluloses. Carbohydr Res 346:1105–1111. doi: 10.1016/j.carres.2011.04.014 CrossRefGoogle Scholar
  42. Ingallinera B, Barbagallo RN, Spagna G, Palmeri R, Todaro A (2005) Effects of thermal treatments on pectin esterase activity determined in blood oranges juices. Enzym Microb Technol 36:258–263. doi: 10.1016/j.enzmictec.2004.08.041 CrossRefGoogle Scholar
  43. Jacobsen NW, Dickinson RG (1974) Spectrometric assay of aldehydes as 6-mercapto-3-substituted-s-trizolo(4,3-b)-tetrazines. Anal Chem 46:298–299. doi: 10.1021/ac60338a039 CrossRefGoogle Scholar
  44. Javeri H, Toledo R, Wicker L (1991) Vacuum infusion of citrus pectin methylesterase and calcium effects on firmness of peaches. J Food Sci 56:739–742. doi: 10.1111/j.1365-2621.1991.tb05371.x CrossRefGoogle Scholar
  45. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40:2931–2944. doi: 10.1016/j.procbio.2005.03.026 CrossRefGoogle Scholar
  46. Jensen M, Petersen BR, Adler-Nissen J (2005) Enzymatic firming of processed red pepper by means of exogenous pectin esterase. Food Biotechnol 18:217–227. doi: 10.1081/FBT-200025667 CrossRefGoogle Scholar
  47. Jolie RP, Duvetter T, Van Loey AM, Hendrickx ME (2010) Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 345:2583–2595. doi: 10.1016/j.carres.2010.10.002 CrossRefGoogle Scholar
  48. Kant S, Gupta R (2012) Purification of pectin methylesterase from Lycopersicon esculentum and its application. Protein Pept Lett 19:1205–1211. doi: 10.2174/092986612803217079 CrossRefGoogle Scholar
  49. Kar F, Arslan N (1999) Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity–molecular weight relationship. Carbohydr Polym 40:277–284. doi: 10.1016/S0144-8617(99)00062-4 CrossRefGoogle Scholar
  50. Kastner H, Kern K, Wilde R, Berthold A, Einhorn-Stoll U, Drusch S (2014) Structure formation in sugar containing pectin gels—influence of tartaric acid content (pH) and cooling rate on the gelation of high-methoxylated pectin. Food Chem 144:44–49. doi: 10.1016/j.foodchem.2013.06.127 CrossRefGoogle Scholar
  51. Kazlauskas RJ (2006) Quantitative assay of hydrolases for activity and selectivity using color changes. In: Reymond J-L (ed) Enzyme Assays. Wiley-VCH Verlag GmbH & Co. KGaA, Germany, pp 17–39. doi: 10.1002/3527607846.ch1 Google Scholar
  52. Kertesz ZI (1937) Pectic enzymes: I. the determination of pectin-methoxylase activity. J Biol Chem 121:589–598Google Scholar
  53. Kertesz ZI (1955) [18] Pectic enzymes. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol 1. Academic Press, New York, pp 158–166. doi: 10.1016/0076-6879(55)01022-7 CrossRefGoogle Scholar
  54. Kim Y, Teng Q, Wicker L (2005) Action pattern of Valencia orange PME de-esterification of high methoxyl pectin and characterization of modified pectins. Carbohydr Res 340:2620–2629. doi: 10.1016/j.carres.2005.09.013 CrossRefGoogle Scholar
  55. Kim Y, Williams MAK, Galant AL, Luzio GA, Savary BJ, Vasu P, Cameron RG (2013) Nanostructural modification of a model homogalacturonan with a novel pectin methylesterase: effects of pH on nanostructure, enzyme mode of action and substrate functionality. Food Hydrocoll 33:132–141. doi: 10.1016/j.foodhyd.2013.02.015 CrossRefGoogle Scholar
  56. Klavons JA, Bennett RD (1986) Determination of methanol using alcohol oxidase and its application to methyl ester content of pectins. J Agric Food Chem 34:597–599. doi: 10.1021/jf00070a004 CrossRefGoogle Scholar
  57. Laratta B, Masi LD, Minasi P, Giovane A (2008) Pectin methylesterase in Citrus bergamia R.: purification, biochemical characterisation and sequence of the exon related to the enzyme active site. Food Chem 110:829–837. doi: 10.1016/j.foodchem.2008.02.065 CrossRefGoogle Scholar
  58. Laurent F, Kotoujansky A, Bertheau Y (2000) Overproduction in Escherichia coli of the pectin methylesterase A from Erwinia chrysanthemi 3937: one-step purification, biochemical characterization, and production of polyclonal antibodies. Can J Microbiol 46:474–780. doi: 10.1139/w00-007 CrossRefGoogle Scholar
  59. Lee M, Macmillan JD (1968) Mode of action of pectic enzymes. I. Purification and certain properties of tomato pectin esterase. Biochemistry 7:4005–4010. doi: 10.1021/bi00851a030 CrossRefGoogle Scholar
  60. Li Q, Sritharathikhum P, Oshima M, Motomizu S (2008) Development of novel detection reagent for simple and sensitive determination of trace amounts of formaldehyde and its application to flow injection spectrophotometric analysis. Anal Chim Acta 612:165–172. doi: 10.1016/j.aca.2008.02.028 CrossRefGoogle Scholar
  61. Lionetti V et al (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880. doi: 10.1104/pp.106.090803 CrossRefGoogle Scholar
  62. Ly-Nguyen B, Van Loey AM, Fachin D, Verlent I, Indrawati, Hendrickx ME (2002) Partial purification, characterization, and thermal and high-pressure inactivation of pectin methylesterase from carrots (Daucus carrota L.) J Agric Food Chem 50:5437–5444. doi: 10.1021/jf011666v CrossRefGoogle Scholar
  63. Mangos TJ, Haas MJ (1996) Enzymatic determination of methanol with alcohol oxidase, peroxidase, and the chromogen 2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) and its application to the determination of the methyl ester content of pectins. J Agric Food Chem 44:2977–2981. doi: 10.1021/jf960274z CrossRefGoogle Scholar
  64. Mangos TJ, Haas MJ (1997) A spectrophotometric assay for the enzymatic demethoxylation of pectins and the determination of pectin esterase activity. Anal Biochem 244:357–366. doi: 10.1006/abio.1996.9908 CrossRefGoogle Scholar
  65. Markoviě O, Kohn R (1984) Mode of pectin deesterification by Trichoderma reesei pectin esterase. Experientia 40:842–843. doi: 10.1007/BF01951984 CrossRefGoogle Scholar
  66. May CD (1990) Industrial pectins: sources, production and applications. Carbohydr Polym 12:79–99. doi: 10.1016/0144-8617(90)90105-2 CrossRefGoogle Scholar
  67. McFeeters RF, Armstrong SA (1984) Measurement of pectin methylation in plant cell walls. Anal Biochem 139:212–217. doi: 10.1016/0003-2697(84)90407-X CrossRefGoogle Scholar
  68. Mejía-Córdova SM, Montañez JC, Aguilar CN, Reyes-Vega ML, de la Garza H, Hours RA, Contreras-Esquivel JC (2005) Extraction of pectin esterase from jalapeno chili pepper (Capsicum annuum) and its thermal stability. Food Sci Biotechnol 14:185–189Google Scholar
  69. Micheli F (2001) Pectin methylesterases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci 6:414–419. doi: 10.1016/S1360-1385(01)02045-3 CrossRefGoogle Scholar
  70. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277. doi: 10.1016/j.pbi.2008.03.006 CrossRefGoogle Scholar
  71. Müller K et al (2013) Demethyl esterification of cell wall pectins in Arabidopsis plays a role in seed germination. Plant Physiol 161:305–316. doi: 10.1104/pp.112.205724 CrossRefGoogle Scholar
  72. Nash T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421CrossRefGoogle Scholar
  73. Nguyen LT, Tay A, Balasubramaniam VM, Legan JD, Turek EJ, Gupta R (2010) Evaluating the impact of thermal and pressure treatment in preserving textural quality of selected foods. LWT Food Sci Technol 43:525–534. doi: 10.1016/j.lwt.2009.09.022 CrossRefGoogle Scholar
  74. Ni L, Lin D, Barrett DM (2005) Pectin methylesterase catalyzed firming effects on low temperature blanched vegetables. J Food Eng 70:546–556. doi: 10.1016/j.jfoodeng.2004.10.009 CrossRefGoogle Scholar
  75. Nunes CS, Castro SM, Saraiva JA, Coimbra MA, Hendrickx ME, Van Loey AM (2006) Thermal and high-pressure stability of purified pectin methylesterase from plums (Prunus domestica). J Food Biochem 30:138–154. doi: 10.1111/j.1745-4514.2006.00057.x CrossRefGoogle Scholar
  76. Øbro J, Harholt J, Scheller HV, Orfila C (2004) Rhamnogalacturonan I in Solanum tuberosum tubers contains complex arabinogalactan structures. Phytochemistry 65:1429–1438. doi: 10.1016/j.phytochem.2004.05.002 CrossRefGoogle Scholar
  77. Ochoa-Villarreal M, Aispuro-Hernández E, Vargas-Arispuro I, Martínez-Téllez MÁ (2012) Plant cell wall polymers: function, structure and biological activity of their derivatives. In: De Souza-Gomes A (ed) Polymerization. InTech Prepress, Rijeka, pp 63–86. doi: 10.5772/2750 Google Scholar
  78. Ortuño C, Duong T, Balaban M, Benedito J (2013) Combined high hydrostatic pressure and carbon dioxide inactivation of pectin methylesterase, polyphenol oxidase and peroxidase in feijoa puree. J Supercrit Fluids 82:56–62. doi: 10.1016/j.supflu.2013.06.005 CrossRefGoogle Scholar
  79. Özler A, Karakuş E, Pekyardimci Ş (2008) Purification and biochemical characteristics of pectin esterase from Malatya apricot (Prunus armeniaca L.) Prep Biochem Biotechnol 38:358–375. doi: 10.1080/10826060802325469 CrossRefGoogle Scholar
  80. Pan X et al (2014) A novel low-temperature-active pectin methylesterase from Penicillium chrysogenum F46 with high efficiency in fruit firming. Food Chem 162:229–234. doi: 10.1016/j.foodchem.2014.04.069 CrossRefGoogle Scholar
  81. Patidar MK, Nighojkar S, Kumar A, Nighojkar A (2016) Papaya peel valorization for production of acidic pectin methylesterase by Aspergillus tubingensis and its application for fruit juice clarification. Biocatal Agric Biotechnol 6:58–67. doi: 10.1016/j.bcab.2016.02.008 Google Scholar
  82. Pelloux J, Rustérucci C, Mellerowicz EJ (2007) New insights into pectin methylesterase structure and function. Trends Plant Sci 12:267–277. doi: 10.1016/j.tplants.2007.04.001 CrossRefGoogle Scholar
  83. Pifferi PG, Malacarne A, Lanzarini G, Casoli U (1985) Spectrophotometric method for the determination of pectin methylesterase activity by Besthorn’s hydrazone. Chem Mikrobiol Technol Lebens 9:65–69Google Scholar
  84. Pilling J, Willmitzer L, Bücking H, Fisahn J (2004) Inhibition of a ubiquitously expressed pectin methyl esterase in Solanum tuberosum L. affects plant growth, leaf growth polarity, and ion partitioning. Planta 219:32–40. doi: 10.1007/s00425-004-1204-y CrossRefGoogle Scholar
  85. Pires TCR, Finardi-Filho F (2005) Extraction and assay of pectic enzymes from Peruvian carrot (Arracacia xanthorriza Bancroft.) Food Chem 89:85–92. doi: 10.1016/j.foodchem.2004.02.023 CrossRefGoogle Scholar
  86. Quesenberry MS, Lee YC (1996) A rapid formaldehyde assay using Purpald reagent: application under periodation conditions. Anal Biochem 234:50–55. doi: 10.1006/abio.1996.0048 CrossRefGoogle Scholar
  87. Remoroza C, Wagenknecht M, Buchholt HC, Moerschbacher BM, Gruppen H, Schols HA (2015) Mode of action of Bacillus licheniformis pectin methylesterase on highly methyl esterified and acetylated pectins. Carbohydr Polym 115:540–550. doi: 10.1016/j.carbpol.2014.09.016 CrossRefGoogle Scholar
  88. Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967. doi: 10.1016/S0031-9422(01)00113-3 CrossRefGoogle Scholar
  89. Riener J, Noci F, Cronin DA, Morgan DJ, Lyng JG (2009) Combined effect of temperature and pulsed electric fields on pectin methyl esterase inactivation in red grapefruit juice (Citrus paradisi). Eur Food Res Technol 228:373–379. doi: 10.1007/s00217-008-0943-6 CrossRefGoogle Scholar
  90. Rouse AH, Atkins CD (1955) Pectin esterase and pectin in commercial citrus juices as determined by methods use at the citrus experiment station. Fla Agric Exp Sta Bull 570:1–19Google Scholar
  91. Sajjaanantakul T, Pitifer LA (1991) Pectin esterase. In: Walter RH (ed) The Chemistry and Technology of Pectin. Academic Press, San Diego, pp 135–164. doi: 10.1016/B978-0-08-092644-5.50013-3 CrossRefGoogle Scholar
  92. Salamanca G, Rodríguez R, Quiralte J, Moreno C, Pascual CY, Barber D, Villalba M (2010) Pectin methylesterases of pollen tissue, a major allergen in olive tree. FEBS J 277:2729–2739. doi: 10.1111/j.1742-4658.2010.07689.x CrossRefGoogle Scholar
  93. Sanjuán N, Hernando I, Lluch MA, Mulet A (2005) Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. J Sci Food Agric 85:2071–2076. doi: 10.1002/jsfa.2224 CrossRefGoogle Scholar
  94. Savary BJ, Hotchkiss AT, Cameron RG (2002) Characterization of a salt-independent pectin methylesterase purified from Valencia orange peel. J Agric Food Chem 50:3553–3558. doi: 10.1021/jf020060j CrossRefGoogle Scholar
  95. Sawicki E, Hauser TR, Stanley TW, Elbert W (1961) The 3-methyl-2-benzothiazolone hydrazone test. Sensitive new methods for the detection, rapid estimation, and determination of aliphatic aldehydes. Anal Chem 33:93–96. doi: 10.1021/ac60169a028 CrossRefGoogle Scholar
  96. Schultz AK, Anthon GE, Dungan SR, Barrett DM (2014) Effect of pectin methylesterase on carrot (Daucus carota) juice cloud stability. J Agric Food Chem 62:1111–1118. doi: 10.1021/jf4043979 CrossRefGoogle Scholar
  97. Semenova MV, Grishutin SG, Gusakov AV, Okunev ON, Sinitsyn AP (2003) Isolation and properties of pectinases from the fungus Aspergillus japonicus. Biochem Mosc 68:559–569. doi: 10.1023/a:1023959727067 CrossRefGoogle Scholar
  98. Sila DN, Smout C, Satara Y, Truong V, Loey AV, Hendrickx M (2007) Combined thermal and high pressure effect on carrot pectin methylesterase stability and catalytic activity. J Food Eng 78:755–764. doi: 10.1016/j.jfoodeng.2005.11.016 CrossRefGoogle Scholar
  99. Sirijariyawat A, Charoenrein S, Barrett DM (2012) Texture improvement of fresh and frozen mangoes with pectin methylesterase and calcium infusion. J Sci Food Agric 92:2581–2586. doi: 10.1002/jsfa.5791 CrossRefGoogle Scholar
  100. Slavov A, Garnier C, Crépeau M-J, Durand S, Thibault J-F, Bonnin E (2009) Gelation of high methoxy pectin in the presence of pectin methylesterases and calcium. Carbohydr Polym 77:876–884. doi: 10.1016/j.carbpol.2009.03.014 CrossRefGoogle Scholar
  101. Somerville C et al (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211. doi: 10.1126/science.1102765 CrossRefGoogle Scholar
  102. Spagna G, Barbagallo RN, Ingallinera B (2003) A specific method for determination of pectin esterase in blood oranges. Enzym Microb Technol 32:174–177. doi: 10.1016/S0141-0229(02)00271-5 CrossRefGoogle Scholar
  103. Sun C et al (2016) Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. J Exp Bot 67:979–989. doi: 10.1093/jxb/erv514 CrossRefGoogle Scholar
  104. Teramae H, Maruo YY (2013) Theoretical study on the reaction mechanism of formation of 3,5-diacetyl-1,4-dihydrolutidine. Int J Quantum Chem 113:393–396. doi: 10.1002/qua.24105 CrossRefGoogle Scholar
  105. Terefe NS, Gamage M, Vilkhu K, Simons L, Mawson R, Versteeg C (2009) The kinetics of inactivation of pectin methylesterase and polygalacturonase in tomato juice by thermosonication. Food Chem 117:20–27. doi: 10.1016/j.foodchem.2009.03.067 CrossRefGoogle Scholar
  106. Tian G-W, Chen M-H, Zaltsman A, Citovsky V (2006) Pollen-specific pectin methylesterase involved in pollen tube growth. Dev Biol 294:83–91. doi: 10.1016/j.ydbio.2006.02.026 CrossRefGoogle Scholar
  107. Tiwari BK, Muthukumarappan K, O’Donnell CP, Cullen PJ (2009) Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innovative Food Sci Emerg Technol 10:166–171. doi: 10.1016/j.ifset.2008.11.006 CrossRefGoogle Scholar
  108. Ünal MÜ, Bellur E (2009) Extraction and characterisation of pectin methylesterase from black carrot (Daucus carota L.) Food Chem 116:836–840. doi: 10.1016/j.foodchem.2009.03.031 CrossRefGoogle Scholar
  109. Ünal MÜ, Şener A (2015) Extraction and characterization of pectin methylesterase from Alyanak apricot (Prunus armeniaca L). J Food Sci Technol 52:1194–1199. doi: 10.1007/s13197-013-1099-3 CrossRefGoogle Scholar
  110. van Alebeek G-JWM, van Scherpenzeel K, Beldman G, Schols HA, Voragen AGJ (2003) Partially esterified oligogalacturonides are the preferred substrates for pectin methylesterase of Aspergillus niger. Biochem J 372:211CrossRefGoogle Scholar
  111. Vasu P, Savary BJ, Cameron RG (2012) Purification and characterization of a papaya (Carica papaya L.) pectin methylesterase isolated from a commercial papain preparation. Food Chem 133:366–372. doi: 10.1016/j.foodchem.2012.01.042 CrossRefGoogle Scholar
  112. Verhertbruggen Y, Knox JP (2007) Pectic polysaccharides and expanding cell walls. In: Verbelen J-P, Vissenberg K (eds) The Expanding Cell, vol 6. Plant Cell Monographs. Springer, Berlin, pp 139–158. doi: 10.1007/7089_2006_074 Google Scholar
  113. Videcoq P, Garnier C, Robert P, Bonnin E (2011) Influence of calcium on pectin methylesterase behaviour in the presence of medium methylated pectins. Carbohydr Polym 86:1657–1664. doi: 10.1016/j.carbpol.2011.06.081 CrossRefGoogle Scholar
  114. Vilariño C, Del Giorgio JF, Hours RA, Cascone O (1993) Spectrophotometric method for fungal pectin esterase activity determination. LWT Food Sci Technol 26:107–110. doi: 10.1006/fstl.1993.1023 CrossRefGoogle Scholar
  115. Villarreal-Alba E, Contreras-Esquivel J, Aguilar-González C, Reyes-Vega M (2004) Pectin esterase activity and the texture of Jalapeño pepper. Eur Food Res Technol 218:164–166. doi: 10.1007/s00217-003-0812-2 CrossRefGoogle Scholar
  116. Vogel M, Büldt A, Karst U (2000) Hydrazine reagents as derivatizing agents in environmental analysis—a critical review. Fresenius J Anal Chem 366:781–791. doi: 10.1007/s002160051572 CrossRefGoogle Scholar
  117. Wang X, Si Y, Mao X, Li Y, Yu J, Wang H, Ding B (2013) Colorimetric sensor strips for formaldehyde assay utilizing Fluoral-p decorated polyacrylonitrile nanofibrous membranes. Analyst 138:5129–5136. doi: 10.1039/C3AN00812F CrossRefGoogle Scholar
  118. Warren ME, Kester H, Benen J, Colangelo J, Visser J, Bergmann C, Orlando R (2002) Studies on the glycosylation of wild-type and mutant forms of Aspergillus niger pectin methylesterase. Carbohydr Res 337:803–812. doi: 10.1016/S0008-6215(02)00032-0 CrossRefGoogle Scholar
  119. Wicker L, Ackerley JL, Hunter JL (2003) Modification of pectin by pectin methylesterase and the role in stability of juice beverages. Food Hydrocoll 17:809–814. doi: 10.1016/S0268-005X(03)00102-4 CrossRefGoogle Scholar
  120. Wojciechowski CL, Fall R (1996) A continuous fluorometric assay for pectin methylesterase. Anal Biochem 237:103–108. doi: 10.1006/abio.1996.0206 CrossRefGoogle Scholar
  121. Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860. doi: 10.1093/mp/ssp066 CrossRefGoogle Scholar
  122. Wood PJ, Siddiqui IR (1971) Determination of methanol and its application to measurement of pectin ester content and pectin methyl esterase activity. Anal Biochem 39(2):418–428Google Scholar
  123. Wu M-C, Jiang C-M, Ho Y-Y, Shen S-C, Chang H-M (2007) Convenient quantification of methanol in juices by methanol oxidase in combination with basic fuchsin. Food Chem 100:412–418. doi: 10.1016/j.foodchem.2005.09.017 CrossRefGoogle Scholar
  124. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ (2008) Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex. Plant Physiol 146:602–611. doi: 10.1104/pp.107.111989 CrossRefGoogle Scholar
  125. Yapo BM, Lerouge P, Thibault J-F, Ralet M-C (2007) Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohydr Polym 69:426–435. doi: 10.1016/j.carbpol.2006.12.024 CrossRefGoogle Scholar
  126. Yoo S-H, Fishman ML, Savary BJ, Hotchkiss AT (2003) Monovalent salt-induced gelation of enzymatically deesterified pectin. J Agric Food Chem 51:7410–7417. doi: 10.1021/jf030152o CrossRefGoogle Scholar
  127. Yoo SH, Lee BH, Savary BJ, Lee S, Lee HG, Hotchkiss AT (2009a) Characteristics of enzymatically-deesterified pectin gels produced in the presence of monovalent ionic salts. Food Hydrocoll 23:1926–1929. doi: 10.1016/j.foodhyd.2009.02.006 CrossRefGoogle Scholar
  128. Yoo Y-H, Lee S, Kim Y, Kim K-O, Kim Y-S, Yoo S-H (2009b) Functional characterization of the gels prepared with pectin methylesterase (PME)-treated pectins. Int J Biol Macromol 45:226–230. doi: 10.1016/j.ijbiomac.2009.05.005 CrossRefGoogle Scholar
  129. Zimmerman RE (1978) A rapid assay for pectin esterase activity which can be used as a prescreen for pectin esterase inhibitors. Anal Biochem 85:219–223. doi: 10.1016/0003-2697(78)90292-0 CrossRefGoogle Scholar
  130. Zocca F, Lomolino G, Curioni A, Spettoli P, Lante A (2007) Detection of pectin methylesterase activity in presence of methanol during grape pomace storage. Food Chem 102:59–65. doi: 10.1016/j.foodchem.2006.01.061 CrossRefGoogle Scholar
  131. Zurek G, Karst U (1997) Microplate photometric determination of aldehydes in disinfectant solutions. Anal Chim Acta 351:247–257. doi: 10.1016/S0003-2670(97)00363-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jesús A. Salas-Tovar
    • 1
  • Adriana C. Flores-Gallegos
    • 1
  • Juan C. Contreras-Esquivel
    • 1
  • S. Escobedo-García
    • 1
  • Jesús A. Morlett-Chávez
    • 2
  • Raúl Rodríguez-Herrera
    • 1
  1. 1.Food Research Department, School of ChemistryUniversidad Autónoma de CoahuilaSaltilloMexico
  2. 2.Clinical and Molecular Diagnosis LaboratoryUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations