Advertisement

Food Analytical Methods

, Volume 10, Issue 7, pp 2132–2142 | Cite as

PAH Residues in Honey by Ultrasound-Vortex-Assisted Liquid-Liquid Micro-Extraction Followed by GC-FID/IT-MS

  • Mario Vincenzo Russo
  • Pasquale Avino
  • Ivan Notardonato
Article

Abstract

Polycyclic aromatic hydrocarbon (PAH) residue concentrations have been measured in honey samples collected on the Italian market. An ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction (UVALLME) procedure coupled with a gas chromatography flame ionization detector or ion trap mass spectrometry (GC-IT/MS) is proposed for fast analysis of fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, and benzoperylene. Different analytical parameters such as extraction solvent and relative volume, best extraction time, pH, NaCl concentration, and reproducibility at low and high concentrations were optimized. Under optimal conditions, the recoveries range from 95 to 107% and correlation coefficients range from 0.893 to 0.995 whereas the limits of detection (LODs) and limits of quantification (LOQs) are ≥36 and ≥41 ng g−1 in GC-FID and 0.030 and 0.069 ng g−1 in GC-IT/MS, respectively. The precision, expressed as relative standard deviations (RSDs), is ≤7.4 and ≤5.2% for low and high PAH concentration levels, respectively. The whole proposed methodology, demonstrated to be simple, reproducible, and sensible, has been applied to the determination of trace PAHs in five honey samples.

Keywords

Polycyclic aromatic hydrocarbons Honey Contaminant DLLME GC-IT/MS 

Notes

Compliance with Ethical Standards

Funding

The study was performed with no funds.

Conflict of Interest

Mario Vincenzo Russo declares that he has no conflict of interest. Pasquale Avino declares that he has no conflict of interest. Ivan Notardonato declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects, and so, the ethical approval is not necessary and not required.

Informed Consent

Not applicable. This article does not contain any studies with human or animal subjects.

Supplementary material

12161_2016_783_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 24 kb)

References

  1. Albero B, Sánchez-Brunete C, Tadeo JL (2003) Determination of polycyclic aromatic hydrocarbons in honey by matrix solid-phase dispersion and gas chromatography/mass spectrometry. J AOAC Inter 86:576–582Google Scholar
  2. Alexander J, Benford D, Cockburn A, Cravedi J, Dogliotti E, Di Domenico A, Fernández-Cruz ML, Fink Gremmels J, Fürst P, Galli C, Grandjean P, Azyl J, Heinemeyer G, Johansson N, Mutti A, Schlatter J, Van Leeuwen R, Van Peteghem C, Verger P (2008) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on polycyclic aromatic hydrocarbons in food 2008. EFSA J 724:1–114 . doi: 10.2903/j.efsa.2008.724Available at: http://onlinelibrary.wiley.com/doi/10.2903/j.efsa.2008.724/epdf Google Scholar
  3. ATSDR, Environmental Medicine; Environmental Health Education (2011). Toxicity of polycyclic aromatic hydrocarbons (PAHs): health effects associated with PAH exposure. Available at http://www.atsdr.cdc.gov/csem/pah/docs/pah.pdf; last access on August 2016
  4. Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mut 45:106–114. doi: 10.1002/em.20095 CrossRefGoogle Scholar
  5. Batelková P, Borkovcová I, Čelechovská O, Vorlová L, Bartáková K (2012) Polycyclic aromatic hydrocarbons and risk elements in honey from the South Moravian region (Czech Republic). Acta Vet Brno 81:169–174. doi: 10.2754/avb201281020169 CrossRefGoogle Scholar
  6. Blasco C, Fernández M, Pena A, Lino C, Silveira MI, Font G, Picó Y (2003) Assessment of pesticide residues in honey samples from Portugal and Spain. J Agr Food Chem 51:8132–8138. doi: 10.1021/jf034870m CrossRefGoogle Scholar
  7. Bostrom C-E, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110:451–488CrossRefGoogle Scholar
  8. Cartoni GP, Goretti G, Monticelli B, Russo MV (1986) Evaluation of capillary gas chromatographic columns in series: analytical application to lemon oil. J Chromatogr 370:93–101. doi: 10.1016/S0021-9673(00)94677-6 CrossRefGoogle Scholar
  9. Ciemniak A, Witczak A, Mocek K (2013) Assessment of honey contamination with polycyclic aromatic hydrocarbons. J Environ Sci Health B 48:993–998. doi: 10.1080/03601234.2013.816609 CrossRefGoogle Scholar
  10. Cinelli G, Avino P, Notardonato I, Centola A, Russo MV (2014a) Study of XAD-2 adsorbent for the enrichment of trace levels of phthalate esters in hydroalcoholic food beverages and analysis by gas chromatography coupled with flame ionization and ion-trap mass spectrometry detectors. Food Chem 146:181–187. doi: 10.1016/j.foodchem.2013.09.064 CrossRefGoogle Scholar
  11. Cinelli G, Notardonato I, Avino P, Russo MV (2014b) Rapid analysis of six phthalate esters in wine by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction coupled with gas chromatography-flame ionization detector or gas chromatography-ion trap mass spectrometry. Anal Chim Acta 769:72–78. doi: 10.1080/03601234.2013.816609 CrossRefGoogle Scholar
  12. Cinelli G, Avino P, Notardonato I, Russo MV (2014c) Ultrasound-vortex-assisted dispersive liquid-liquid microextraction coupled with gas chromatography with a nitrogen-phosphorus detector for simultaneous and rapid determination of organophosphorus pesticides and triazines in wine. Anal Meth 6:782–790. doi: 10.1039/C3AY41641K CrossRefGoogle Scholar
  13. Conti ME, Botre F (2001) Honeybees and their product as potential bioindicators of heavy metals contamination. Environ Monit Assess 69:267–282. doi: 10.1023/A:1010719107006 CrossRefGoogle Scholar
  14. Dobrinas S, Birghila S, Coatu V (2008) Assessment of polycyclic aromatic hydrocarbons in honey and propolis produced from various flowering trees and plants in Romania. J Food Compos Anal 27:71–77. doi: 10.1016/j.jfca.2007.07.003 CrossRefGoogle Scholar
  15. Giannetti L, Longo F, Buiarelli F, Russo MV, Neri B (2010) Tetracycline residues in royal jelly and honey by liquid chromatography tandem mass spectrometry: validation study according to Commission Decision 2002/657/EC. Anal Bioanal Chem 398:1017–1023. doi: 10.1007/s00216-010-3943-x CrossRefGoogle Scholar
  16. Hammel YA, Mohamed R, Gremaud E, LeBreton MH, Guy PA (2008) Multi-screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1177:58–76. doi: 10.1016/j.chroma.2007.10.112 CrossRefGoogle Scholar
  17. Kenneth RS, Moorthy B (2005) Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: implications for human atherogenesis. Drug Met Rev 37:595–610. doi: 10.1080/03602530500251253 CrossRefGoogle Scholar
  18. Knoll JK (1985) Estimation of the limit of detection in chromatography. J Chromatogr Sci 23:422–425. doi: 10.1093/chromsci/23.9.422 CrossRefGoogle Scholar
  19. Lachman J, Orsák M, Hejtmánková A, Kovářová E (2010) Evaluation of antioxidant activity and total phenolics of selected Czech honeys. LWT Food Sci Technol 43:52–58. doi: 10.1016/j.lwt.2009.06.008 CrossRefGoogle Scholar
  20. Lambert O, Veyrand B, Durand S, Marchand P, Le Bizec B, Piroux M, Puyo S, Thorin C, Delbac F, Pouliquen H (2012) Polycyclic aromatic hydrocarbons: bees, honey and pollen as sentinels for environmental chemical contaminants. Chemosphere 86:98–104. doi: 10.1016/j.chemosphere.2011.09.025 CrossRefGoogle Scholar
  21. Moret S, Purcaro G, Conte LS (2010) Polycyclic aromatic hydrocarbons (PAHs) levels in propolis and propolis-based dietary supplements from the Italian market. Food Chem 122:333–338. doi: 10.1016/j.foodchem.2010.02.041 CrossRefGoogle Scholar
  22. Notardonato I, Avino P, Cinelli G, Russo MV (2016) Rapid and reliable method for analyzing acaricides in honey-based products. Food Anal Meth 9:1675–1685. doi: 10.1007/s12161-015-0344-y CrossRefGoogle Scholar
  23. Perugini M, Di Serafino G, Giacomelli A, Medrzycki P, Sabatini AG, Persano Oddo L, Marinelli E, Amorena M (2009) Monitoring of polycyclic aromatic hydrocarbons in bees (Apis mellifera) and honey in urban areas and wildlife reserves. J Agric Food Chem 57:7440–7444. doi: 10.1021/jf9011054 CrossRefGoogle Scholar
  24. Ramesh A, Walker SA, Hood DB, Guillen MD, Schneider K, Weyand EH (2004) Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol 23:301–333. doi: 10.1080/10915810490517063 CrossRefGoogle Scholar
  25. Rezaee M, Assadi Y, Hosseini MRM, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116:–9. doi: 10.1016/j.chroma.2006.03.007
  26. Rubin H (2001) Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22:1903–1939. doi: 10.1093/carcin/22.12.1903 CrossRefGoogle Scholar
  27. Russo MV, Goretti G, Liberti A (1985) A fast procedure to immobilize polyethylene glycols in glass capillary columns. J High Resolut Chromatogr 8:535–538. doi: 10.1002/jhrc.1240080911 CrossRefGoogle Scholar
  28. Russo MV, Goretti G, Soriero A (1996) Preparation and application of fused-silica capillary microcolumns (25-50 μm ID) in gas chromatography. Ann Chim (Rome) 86:115–124Google Scholar
  29. Russo MV (2000) Fast solid phase extraction of polychlorobiphenyls and chlorinated pesticide residues from mussels using Sep-Pak cartridges. Chromatographia 51:71–76. doi: 10.1007/BF02490698 CrossRefGoogle Scholar
  30. Russo MV, Neri B (2002) Fluvalinate residues in honey by capillary gas chromatography-electron capture detection-mass spectrometry. Chromatographia 55:607–610. doi: 10.1007/BF02492909 CrossRefGoogle Scholar
  31. Russo MV, Notardonato I, Cinelli G, Avino P (2012a) Evaluation of an analytical method for determining phthalate esters in wine samples by solid-phase extraction and gas chromatography coupled with ion-trap mass spectrometer detector. Anal Bioanal Chem 402:1373–1381. doi: 10.1007/s00216-011-5551-9 CrossRefGoogle Scholar
  32. Russo MV, Avino P, Cinelli G, Notardonato I (2012b) Sampling of organophosphorus pesticides at trace levels in the atmosphere using XAD-2 adsorbent and analysis by gas chromatography coupled with nitrogen-phosphorus and ion-trap mass spectrometry detectors. Anal Bioanal Chem 404:1517–1527. doi: 10.1007/s00216-012-6205-2 CrossRefGoogle Scholar
  33. Russo MV, Notardonato I, Avino P, Cinelli G (2014a) Determination of phthalate esters at trace levels in light alcoholic drinks and soft drinks by XAD-2 adsorbent and gas chromatography coupled with ion trap-mass spectrometry detection. Anal Meth 6:7030–7037. doi: 10.1039/C4AY00926F CrossRefGoogle Scholar
  34. Russo MV, Notardonato I, Avino P, Cinelli G (2014b) Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid-liquid microextraction followed by gas chromatography-ion trap mass spectrometry. RSC Adv 4:59655–59663. doi: 10.1039/C4RA08574D CrossRefGoogle Scholar
  35. Russo MV, Avino P, Perugini L, Notardonato I (2016) Fast analysis of nine PAHs in beer by ultrasound-vortex-assisted dispersive liquid-liquid micro-extraction coupled with gas chromatography-ion trap mass spectrometry. RSC Adv 6:13920–13927. doi: 10.1039/C5RA24873F CrossRefGoogle Scholar
  36. Skupinska K, Misiewicz I, Kasprzycka-Guttman T (2004) Polycyclic aromatic hydrocarbons: physiochemical properties, environmental appearance and impact on living organisms. Acta Pol Pharm 61:233–240Google Scholar
  37. Sram RJ, Binkova B, Dejmek J, Bobak M (2005) Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 113:375–382CrossRefGoogle Scholar
  38. Suades-González E, Gascon M, Guxens M, Sunyer J (2015) Air pollution and neuropsychological development: a review of the latest evidence. Endocrinol 156:3473–3482. doi: 10.1210/en.2015-1403 CrossRefGoogle Scholar
  39. US EPA (1998) EPA Methods 550.1/610/8100/8270C/8310. Polynuclear aromatic hydrocarbons (PAH) mixtureGoogle Scholar
  40. Wenzl T, Simon R, Kleiner J, Anklam E (2006) Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TRAC-Trend Anal Chem 25:716–725. doi: 10.1016/j.trac.2006.05.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mario Vincenzo Russo
    • 1
  • Pasquale Avino
    • 2
  • Ivan Notardonato
    • 1
  1. 1.Dipartimento Agricoltura, Ambiente e AlimentiUniversità del MoliseCampobasso,Italy
  2. 2.DIT, INAIL Research AreaRomeItaly

Personalised recommendations