Food Analytical Methods

, Volume 10, Issue 7, pp 2207–2216 | Cite as

Combination of NMR and MRI Techniques for Non-invasive Assessment of Sea Cucumber (Stichopus japonicas) Tenderization During Low-Temperature Heating Process

  • Xiuping Dong
  • Yan Li
  • Yong Li
  • Liang Song
  • Shasha Cheng
  • Dongmei Li
  • Bei-Wei Zhu
  • Dayong Zhou
  • Mingqian Tan
Article

Abstract

The purpose of this study was to develop and test the combination of nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) method to assess the proton changes of sea cucumber body wall during low-temperature heating process. NMR relaxometry and MRI measurements indicated a significant proton change in the internal structure for sea cucumber body wall when the heating temperature increased from 45 to 55 °C. Differential scanning calorimetry (DSC) analysis revealed that the denaturation temperature of sea cucumber body wall was in the range of 45–55 °C with an endothermic peak at 51 °C, which is in accordance with the result observed in NMR and MRI. Rheological study showed similar trend to the DSC thermogram. The band change in amide I region of Fourier transform infrared (FTIR) spectra indicated the decrease in α-helix content and possible formation of other secondary structures. Scanning electron microscopy (SEM) further confirmed that the low-temperature heating did induce microstructure changes. The analysis of the Ringerʼs soluble fraction (RSF), enzyme-labile fraction (ELF), and total unaltered fraction (TUF) for sea cucumber body wall during low-temperature heating provided more detailed information on the cause of structure change observed in NMR and MRI. The NMR parameters were highly correlated with the rheology storage modulus (G′), relative enzymatic assay parameters, RSF, ELF, and TUF. All these results demonstrated that it could be possible to use NMR and MRI to assess sea cucumber tenderization during low-temperature heating process.

Keywords

Sea cucumber Low-field NMR MRI Low-temperature heating Collagen fiber Tenderization 

Notes

Compliance with Ethical Standards

Funding

This work was supported by the National Nature Science Foundation of China (31401520, 31401519), the National Key Scientific Instrument and Equipment Development Project of China (2013YQ17046307), the National Key Technology Research and Development Program of China in 12th Five-Year Plan (2014BAD04B09), the Public Science and Technology Research Funds Project of Ocean (201505029), and Cultivation Plan for Youth Agricultural Science and Technology Innovative Talents of Liaoning Province (2015002).

Conflicts of Interest

Xiuping Dong declares that he has no conflict of interest. Yan Li declares that he has no conflict of interest. Yong Li declares that he has no conflict of interest. Liang Song declares that he has no conflict of interest. Shasha Cheng declares that he has no conflict of interest. Dongmei Li declares that he has no conflict of interest. Wei-bei Zhu declares that he has no conflict of interest. Dayong Zhou declares that he has no conflict of interest. Mingqian Tan declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or laboratory animals performed by any of the authors.

Informed Consent

Not applicable.

References

  1. Bertram HC, Wu Z, Berg FVD, Andersen HJ (2006) NMR relaxometry and differential scanning calorimetry during meat cooking. Meat Sci 74:684–689. doi: 10.1016/j.meatsci.2006.05.020 CrossRefGoogle Scholar
  2. Carneiro CDS, Mársico ET, Ribeiro RDOR, Conte Júnior CA, Álvares TS, De Jesus EFO (2013) Quality attributes in shrimp treated with polyphosphate after thawing and cooking: a study using physicochemical analytical methods and low-field1H NMR. J Food Process Eng 36:492–499. doi: 10.1111/jfpe.12011 CrossRefGoogle Scholar
  3. Cui F-X, Xue C-H, Li Z-J, Zhang Y-Q, Dong P, Fu X-Y, Gao X (2007) Characterization and subunit composition of collagen from the body wall of sea cucumber Stichopus japonicus. Food Chem 100:1120–1125. doi: 10.1016/j.foodchem.2005.11.019 CrossRefGoogle Scholar
  4. Dileep A, Shamasundar B, Binsi P, Badii F, Howell N (2005) Effect of ice storage on the physicochemical and dynamic viscoelastic properties of ribbonfish (Trichiurus spp) meat. J Food Sci 70:E537–E545. doi: 10.1111/j.1365-2621.2005.tb08316.x CrossRefGoogle Scholar
  5. Geng S, Wang H, Wang X, Ma X, Xiao S, Wang J, Tan M (2015) A non-invasive NMR and MRI method to analyze the rehydration of dried sea cucumber. Anal Methods-UK 7:2413–2419. doi: 10.1039/C4AY03007A CrossRefGoogle Scholar
  6. Goetz J, Koehler P (2005) Study of the thermal denaturation of selected proteins of whey and egg by low resolution NMR. LWT-Food Sci Technol 38:501–512. doi: 10.1016/j.lwt.2004.07.009 CrossRefGoogle Scholar
  7. Han M, Zhang Y, Fei Y, Xu X, Zhou G (2009) Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. Eur Food Res Technol 228:665–670. doi: 10.1007/s00217-008-0976-x CrossRefGoogle Scholar
  8. Herrero AM, Carmona P, García ML, Solas MT, Careche M (2005) Ultrastructural changes and structure and mobility of myowater in frozen-stored hake (Merluccius merluccius L.) muscle: relationship with functionality and texture. J Agric Food Chem 53:2558–2566. doi: 10.1021/jf0490706 CrossRefGoogle Scholar
  9. Hill F (1966) The solubility of intramuscular collagen in meat animals of various ages. J Food Sci 31:161–166. doi: 10.1111/j.1365-2621.1966.tb00472.x CrossRefGoogle Scholar
  10. Hong Y-S, Cho J-H, Kim N-R, Lee C, Cheong C, Hong KS, Lee C-H (2009) Artifacts in the measurement of water distribution in soybeans using MR imaging. Food Chem 112:267–272. doi: 10.1016/j.foodchem.2008.05.109 CrossRefGoogle Scholar
  11. Kim S-K, Himaya S (2012) Triterpene glycosides from sea cucumbers and their biological activities. Adv Food Nutr Res 65:297–319. doi: 10.1016/B978-0-12-416003-3.00020-2 CrossRefGoogle Scholar
  12. Kr S (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem 38:181–364CrossRefGoogle Scholar
  13. Lee DC, Haris PI, Chapman D, Mitchell RC (1990) Determination of protein secondary structure using factor analysis of infrared spectra. Biochemist 29:9185–9193. doi: 10.1021/bi00491a012 CrossRefGoogle Scholar
  14. Leikina E, Mertts M, Kuznetsova N, Leikin S (2002) Type I collagen is thermally unstable at body temperature. P Natl Acad Sci USA 99:1314–1318. doi: 10.1073/pnas.032307099 CrossRefGoogle Scholar
  15. Li C, Liu D, Zhou G, Xu X, Qi J, Shi P, Xia T (2012) Meat quality and cooking attributes of thawed pork with different low field NMR T 21. Meat Sci 92:79–83. doi: 10.1016/j.meatsci.2011.11.015 CrossRefGoogle Scholar
  16. Liu J, Zhu K, Ye T, Wan S, Wang Y, Wang D, Li B, Wang C (2013) Influence of konjac glucomannan on gelling properties and water state in egg white protein gel. Food Res Inter 51:437–443. doi: 10.1016/j.foodres.2013.01.002 CrossRefGoogle Scholar
  17. Liu L, Zhang Z, Liu Q, Yang B, Huang J, Gao X (2012) Rheological and structural properties of sea cucumber Stichopus japonicus during different heating temperature. Int J Fish Aquaculture 4:209–216. doi: 10.5897/IJFA12.027 Google Scholar
  18. Liu R, Zhao S-M, Xiong S-B, Xie B-J, Qin L-H (2008) Role of secondary structures in the gelation of porcine myosin at different pH values. Meat Sci 80:632–639. doi: 10.1016/j.meatsci.2008.02.014 CrossRefGoogle Scholar
  19. Lomiwes D, Farouk M, Wu G, Young O (2014) The development of meat tenderness is likely to be compartmentalised by ultimate pH. Meat Sci 96:646–651. doi: 10.1016/j.meatsci.2013.08.022 CrossRefGoogle Scholar
  20. Marcone MF, Wang S, Albabish W, Nie S, Somnarain D, Hill A (2013) Diverse food-based applications of nuclear magnetic resonance (NMR) technology. Food Res Inter 51:729–747. doi: 10.1016/j.foodres.2012.12.046 CrossRefGoogle Scholar
  21. Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material - skin, bone and fins. Food Chem 68:277–281. doi: 10.1016/S0308-8146(99)00188-0 CrossRefGoogle Scholar
  22. Naganathan GK, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE (2008) Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput Electron Agr 64:225–233. doi: 10.1016/j.compag.2008.05.020 CrossRefGoogle Scholar
  23. Nakano S, Kousaka J, Fujii K, Yorozuya K, Yoshida M, Mouri Y, Akizuki M, Tetsuka R, Ando T, Fukutomi T, Oshima Y, Kimura J, Ishiguchi T, Arai O (2012) Impact of real-time virtual sonography, a coordinated sonography and MRI system that uses an image fusion technique, on the sonographic evaluation of MRI-detected lesions of the breast in second-look sonography. Breast Cancer Res Treat 134:1179–1188. doi: 10.1007/s10549-012-2163-9 CrossRefGoogle Scholar
  24. Patel KK, Khan MA, Kar A (2015) Recent developments in applications of MRI techniques for foods and agricultural produce—an overview. J Food Sci Technol MYS 52:1–26. doi: 10.1007/s13197-012-0917-3 CrossRefGoogle Scholar
  25. Powell T, Hunt M, Dikeman M (2000) Enzymatic assay to determine collagen thermal denaturation and solubilization. Meat Sci 54:307–311. doi: 10.1016/S0309-1740(99)00092-3 CrossRefGoogle Scholar
  26. Rabotyagova OS, Cebe P, Kaplan DL (2008) Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mat Sci Eng C-Mater 28:1420–1429. doi: 10.1016/j.msec.2008.03.012 CrossRefGoogle Scholar
  27. Sánchez-Valencia J, Sánchez-Alonso I, Martinez I, Careche M (2015) Low-field nuclear magnetic resonance of proton (1H LF NMR) relaxometry for monitoring the time and temperature history of frozen hake (Merluccius merluccius L.) muscle. Food Bioprocess Tech 8:2137–2145. doi: 10.1007/s11947-015-1569-x CrossRefGoogle Scholar
  28. Saito M, Kunisaki N, Urano N, Kimura S (2002) Collagen as the major edible component of sea cucumber (Stichopus japonicus). J Food Sci 67:1319–1322. doi: 10.1111/j.1365-2621.2002.tb10281.x CrossRefGoogle Scholar
  29. Salomonsen T, Sejersen MT, Viereck N, Ipsen R, Engelsen SB (2007) Water mobility in acidified milk drinks studied by low-field 1 H NMR. Intl Dairy J 17:294–301. doi: 10.1016/j.idairyj.2006.04.003 CrossRefGoogle Scholar
  30. Sano T, Ohno T, Otsuka-Fuchino H, Matsumoto JJ, Tsuchiya T (1994) Carp natural actomyosin: thermal denaturation mechanism. J Food Sci 59:1002–1008. doi: 10.1111/j.1365-2621.1994.tb08177.x CrossRefGoogle Scholar
  31. Santos PM, Corrêa CC, Forato LA, Tullio RR, Cruz GM, Colnago LA (2014) A fast and non-destructive method to discriminate beef samples using TD-NMR. Food Control 38:204–208. doi: 10.1016/j.foodcont.2013.10.026 CrossRefGoogle Scholar
  32. Shaarani SM, Nott KP, Hall LD (2006) Combination of NMR and MRI quantitation of moisture and structure changes for convection cooking of fresh chicken meat. Meat Sci 72:398–403. doi: 10.1016/j.meatsci.2005.07.017 CrossRefGoogle Scholar
  33. Shao X, Li Y (2010) Classification and prediction by LF NMR. Food Bioprocess Tech 5:1817–1823. doi: 10.1007/s11947-010-0455-9 CrossRefGoogle Scholar
  34. Susi H, Byler DM (1986) Resolution-enhanced Fourier transform infrared spectroscopy of enzymes. Method Enzymol 130:290–311. doi: 10.1016/0076-6879(86)30015-6 CrossRefGoogle Scholar
  35. Van Laack R, Stevens S, Stalder K (2001) The influence of ultimate pH and intramuscular fat content on pork tenderness and tenderization. J Anim Sci 79:392–397. doi: 10.2527/2001.792392x CrossRefGoogle Scholar
  36. Yearbook CFS (2009) China fishery statistical yearbook 2008. Fisheries Bureau, Department of Agriculture of China, Beijing (in Chinese)Google Scholar
  37. Yogesh K, Ali J (2014) Effect of mung bean and sprouted mung bean (Vigna radiata) powder on chicken breast meat tenderness, microbial and sensory characteristics. J Food Sci Tech 51:1411–1415. doi: 10.1007/s13197-012-0650-y CrossRefGoogle Scholar
  38. Zhang L, McCarthy MJ (2012) Black heart characterization and detection in pomegranate using NMR relaxometry and MR imaging. Postharvest Biol Tec 67:96–101. doi: 10.1016/j.postharvbio.2011.12.018 CrossRefGoogle Scholar
  39. Zhang L, McCarthy MJ (2013) NMR study of hydration of navy bean during cooking. LWT-Food Sci Technol 53:402-408. doi: 10.1016/j.lwt.2013.03.011
  40. Zhou D-Y, Chang X-N, Bao S-S, Song L, Zhu B-W, Dong X-P, Zong Y, Li D-M, Zhang M-M, Liu Y-X (2014) Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall. Food Chem 158:192–199. doi: 10.1016/j.foodchem.2014.02.105 CrossRefGoogle Scholar
  41. Zhou Y, Yang H, Liu S, Yuan X, Mao Y, Liu Y, Xu X, Zhang F (2006) Feeding and growth on bivalve biodeposits by the deposit feeder Stichopus japonicus Selenka (Echinodermata: Holothuroidea) co-cultured in lantern nets. Aquaculture 256:510–520. doi: 10.1016/j.aquaculture.2006.02.005 CrossRefGoogle Scholar
  42. Zhu J, Wang D, Dong X, Zhu B (2013) Study on tenderization of sea cucumber (StichoPusjaPonicus) by low-temperature heating. In: Abstract of Food Summit in China 2013 & Annual meeting of Chinese Institte of Food Science and Technology (p. 64). Hangzhou China: Chinese Institte of Food Science and TechnologyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xiuping Dong
    • 1
    • 2
    • 3
    • 4
  • Yan Li
    • 1
    • 2
    • 3
    • 4
  • Yong Li
    • 1
    • 3
    • 4
  • Liang Song
    • 1
    • 3
    • 4
  • Shasha Cheng
    • 1
    • 2
    • 3
  • Dongmei Li
    • 1
    • 2
    • 3
    • 4
  • Bei-Wei Zhu
    • 1
    • 2
    • 3
    • 4
  • Dayong Zhou
    • 1
    • 2
    • 3
    • 4
  • Mingqian Tan
    • 1
    • 2
    • 3
  1. 1.School of Food Science and TechnologyDalian Polytechnic University, National Engineering Research Center of SeafoodDalianChina
  2. 2.Engineering Research Center of Seafood of Ministry of Education of ChinaDalianChina
  3. 3.Liaoning Key Laboratory of Seafood Science and TechnologyDalianChina
  4. 4.National Research and Development Branch Center for Shellfish Processing (Dalian)DalianChina

Personalised recommendations