Skip to main content
Log in

Determination of Rutin in Black Tea by Adsorption Voltammetry (AdV) in the Presence of Morin and Quercetin

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This paper presents a sensitive method to rutin determination on a screen-printed multi-walled carbon nanotube electrode modified with poly(3,4-ethylenedioxythiophene) and ionic liquid (SMWCNT-PEDOT-IL). Several studies show that rutin may be absorbed onto the surface of electrodes modified with PEDOT. On the other hand, the presence of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) on the surface of the modified electrode increased the oxidation current by nearly 30 % and facilitates the oxidation of rutin to values less positive potential compared with the modified electrode only with PEDOT. Cyclic voltammetry was used to quantify and characterize the modified electrode. pH and electrochemical parameters, potential adsorption, time adsorption, and scan rate were optimized based on the oxidation of rutin to obtain the following values: pH 6.0; Eads, −0.10 V; tads, 80 s; and scan rate 50 mV s−1. The detection limit (3σ) was 7.7 × 10−8 mol L−1 and the RSD was 1.5 %. The new method was used to quantify rutin in black tea samples in the presence of others flavones with consistent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Deng P, Xu Z, Li J (2013) Simultaneous determination of ascorbic acid and rutin in pharmaceutical preparations with electrochemical method based on multi-walled carbon nanotubes–chitosan composite film modified electrode. J Pharm Biomed 76:234–242

    Article  CAS  Google Scholar 

  • Drinkwater JM, Tsao R, Liu R, Defelice C, Wolyn DJ (2015) Effects of cooking on rutin and glutathione concentrations and antioxidant activity of green asparagus (Asparagus officinalis) spears. J Funct Foods 12:342–353

    Article  CAS  Google Scholar 

  • Franzoi AC, Spinelli A, Vieira IC (2008) Rutin determination in pharmaceutical formulations using a carbon paste electrode modified with poly(vinylpyrrolidone). J Pharma Biomed 47:973–977

    Article  CAS  Google Scholar 

  • Franzoi AC, Migowski P, Dupont J, Vieira IC (2009) Development of biosensors containing laccase and imidazolium bis(trifluoromethylsulfonyl)imide ionic liquid for the determination of rutin. Anal Chim Acta 639:90–95

    Article  CAS  Google Scholar 

  • Germanò MP, De Pasquale R, D’Angelo V, Catania S, Silvari V, Costa C (2002) Evaluation of extracts and isolated fraction from Capparis spinosa L. buds as an antioxidant source. J Agric Food Chem 50:1168–1171

    Article  Google Scholar 

  • Gholivanda MB, Mohammadi-Behzada L, Hosseinkhanib H (2016) Application of a Cu—chitosan/multiwalled carbon nanotube film-modified electrode for the sensitive determination of rutin. Anal Biochem 493:35–43

    Article  Google Scholar 

  • Guardia T, Rotelli A, Juarez A, Pelzer L (2001) Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. IL Farmaco 56:683–687

    Article  CAS  Google Scholar 

  • Guzmán N, Fernández J, Parada M, Orbegozo C, Rodríguez M, Padrón A (2010) Efecto del catión, del anión y del co-ión sobre la agregación de líquidos iónicos en solución acuosa. Quim Nov. 33:1703–1708

  • Jeszka-Skowron M, Krawczyk M, Zgoła-Grześkowiak A (2015) Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: influence of citric acid addition on extraction of metals. J Food Compos Anal 40:70–77

    Article  CAS  Google Scholar 

  • Kalinova J, Triska J, Vrchotova N (2006) Distribution of vitamin E, squalene, epicatechin, and rutin in common buckwheat plants (Fagopyrum esculentum Moench). J Agric Food Chem 54:5330–5335

    Article  CAS  Google Scholar 

  • Karyakin AA (2001) Prussian blue and its analogues: electrochemistry and analytical applications. Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  • Kicel A, Owczarek A, Michel P, Skalicka-Woźniak K, Kiss AK, Olszewska MA (2015) Application of HPCCC, UHPLC-PDA-ESI-MS3 and HPLC-PDA methods for rapid, one-step preparative separation and quantification of rutin in Forsythia flowers. Ind Crop Prod 76:86–94

    Article  CAS  Google Scholar 

  • Kopacz M (2003) Quercetin and morinsulfonates as analytical reagents. J Anal Chem 58:225–229

    Article  CAS  Google Scholar 

  • Lin Y, Juan I, Chen Y, Liang Y, Lin JK (1996) Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J Agric Food Chem 44:1387–1394

    Article  CAS  Google Scholar 

  • Liu W, Guo R (2005) The interaction between morin and CTAB aggregates. J Colloid Interface Sci 290:564–573

    Article  CAS  Google Scholar 

  • Liu W, Guo R (2006) Interaction between flavonoid, quercetin and surfactant aggregates with different charges. J Colloid Interface Sci 302:625–632

    Article  CAS  Google Scholar 

  • Mazaletskaya L, Sheludchenko N, Shishkina L (2010) Chemical reactions in gas, liquid and solid phases: synthesis, properties and application. Nova, New York

    Google Scholar 

  • Miao D, Li J, Yang R, Qu J, Qu L, De B Harrington P (2014) Supersensitive electrochemical sensor for the fast determination of rutin in pharmaceuticals and biological samples based on poly(diallyldimethylammonium chloride)-functionalized grapheme. J Electroanal Chem 732:17–24

    Article  CAS  Google Scholar 

  • Serafín V, Agüí L, Yáñez-Sedeño P, Pingarrón JM (2011) A novel hybrid platform for the preparation of disposable enzyme biosensorsbased on poly(3,4-ethylenedioxythiophene) electrodeposition in an ionic liquid medium onto gold nanoparticles-modified screen-printed electrodes. J Electroanal Chem 656:152–158

    Article  Google Scholar 

  • Sun W, Yang M, Li Y, Jiang Q, Liu S, Jiao K (2008) Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. J Pharma Biomed 48:1326–1331

    Article  CAS  Google Scholar 

  • Sun W, Wang Y, Gong S, Cheng Y, Shia F, Sun Z (2013a) Application of poly(acridine orange) and graphene modified carbon/ionic liquid paste electrode for the sensitive electrochemical detection of rutin. Electrochim Acta 109:298–304

    Article  CAS  Google Scholar 

  • Sun W, Wang D, Zhang Y-Y, Ju X-M, Yang H-X, Chen Y-X, Sun Z-F (2013b) Electrodeposited graphene and gold nanoparticle modified carbon ionic liquid electrode for sensitive detection of rutin. Chin J Anal Chem 41:709–713

    Article  CAS  Google Scholar 

  • Sun W, Wang X, Zhu H, Sun X, Shi F, Li G, Sun Z (2013c) Graphene-MnO2 nanocomposite modified carbon ionic liquid electrode for the sensitive electrochemical detection of rutin. Sensors Actuators B Chem 178:443–449

    Article  CAS  Google Scholar 

  • Sun W, Dongb L, Lu Y, Deng Y, Yu J, Sun X, Zhu Q (2014) Electrochemical detection of rutin on nitrogen-doped graphene modified carbon ionic liquid electrode. Sensors Actuators B Chem 199:36–41

    Article  CAS  Google Scholar 

  • Vasantha VS, Chen S-M (2006) Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes. J Electroanal Chem 592:77–87

    Article  CAS  Google Scholar 

  • Xiao P, Zhou Q, Xiao F, Zhao F, Zeng B (2006) Sensitive voltammetric determination of morin on a MultiWalled carbon nanotubes-paraffin oil paste electrode. Int J Electrochem Sci 1:228–237

    CAS  Google Scholar 

  • Xiao Y, Wang Y, Gao SQ, Zhang R, Ren RB, Li N, Zhang HQ (2011) Determination of the active constituents in Arnebia euchroma (Royle) Johnst. by ionic liquid-based ultrasonic-assisted extraction high-performance liquid chromatography. J Chromatogr B 879:1833–1838

    Article  CAS  Google Scholar 

  • Xiaoand Y, Zhang HQ (2012) Homogeneous ionic liquid microextraction of the active constituents from fruits of Schisandra chinensis and Schisandra sphenanthera. Anal Chim Acta 712:78–84

    Article  Google Scholar 

  • Yang S, Li G, Zhao J, Zhu H, Qua L (2014) Electrochemical preparation of Ag nanoparticles/poly(methylene blue) functionalized graphene nanocomposite film modified electrode for sensitive determination of rutin. J Electroanal Chem 717–718:225–230

    Article  Google Scholar 

  • Yola ML, Atar N (2014) A novel voltammetric sensor based on gold nanoparticles involved in paminothiophenol functionalized multi-walled carbon nanotubes: application to the simultaneous determination of quercetin and rutin. Electrochim Acta 119:24–31

    Article  CAS  Google Scholar 

  • Yun Q, Jiang M, Cuib Y-L, Zhao L, Liu S (2015) Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin–Cr(III) complex. J Hazard Mater 285:336–345

    Article  Google Scholar 

  • Zhan T, Sun X, Wang X, Sun W, Hou W (2010) Application of ionic liquid modified carbon ceramic electrode for the sensitive voltammetric detection of rutin. Talanta 82:1853

    Article  CAS  Google Scholar 

  • Zhang K, Xu J, Zhu X, Lu L, Duan X, Hu D, Dong L, Sun H, Gao Y, Wu Y (2015) Poly(3,4-ethylenedioxythiophene) nanorods grown on graphene oxide sheets as electrochemical sensing platform for rutin. J Electroanal Chem 739:66–72

    Article  CAS  Google Scholar 

  • Zhanga Y, Zheng J (2008) Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode. Talanta 77:325–330

    Article  Google Scholar 

  • Zhu Z, Sun X, Zhuang X, Zeng Y, Sun W, Huang X (2010) Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin. Thin Solid Films 519:928–933

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by the Universidad de Ibagué (Projects 14-304-INT, 15-343-INT and 15-376-INT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Nagles.

Ethics declarations

Funding

This study was funded by the Ibague University (grant number Projects 14-304-INT, 15-343-INT and 15-376-INT).

Conflict of Interest

Edgar Nagles declares that he has no conflict of interest. Olimpo García-Beltran declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagles, E., García-Beltrán, O. Determination of Rutin in Black Tea by Adsorption Voltammetry (AdV) in the Presence of Morin and Quercetin. Food Anal. Methods 9, 3420–3427 (2016). https://doi.org/10.1007/s12161-016-0538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0538-y

Keywords

Navigation