Advertisement

Food Analytical Methods

, Volume 9, Issue 8, pp 2200–2209 | Cite as

Application of LC with Evaporative Light Scattering Detector for Biogenic Amines Determination in Fair Trade Cocoa-Based Products

  • U. Gianfranco Spizzirri
  • Ortensia Ilaria Parisi
  • Nevio Picci
  • Donatella RestucciaEmail author
Article

Abstract

In this study, the separation of eight biogenic amines (cadaverine, serotonin, histamine, spermidine, spermine, tyramine, putrescine and β-phenylethylamine) by a liquid chromatography (LC) method with evaporative light scattering detection (ELSD) was performed. The LC–ELSD method was validated by comparison of the results with those obtained through LC–ultraviolet (UV) determination, based on a pre-column dansyl chloride derivatisation step, and the recorded data showed as both analytical methods can be interchangeably used for biogenic amines determination. LC–ELSD methodology showed good precision and permitted to achieve, for standard solutions, limits of detection (LOD) ranging from 0.01 to 0.02 μg ml−1 and limits of quantitation (LOQ) ranging from 0.03 to 0.05 μg ml−1. The whole methodology, comprehensive of the homogenization–extraction process and LC–ELSD analysis, has been applied in the analysis of several samples of fair trade cocoa derivatives. The most abundant amine found was histamine for a total amount of biogenic amines in the range 5.81–38.82 μg g−1. The highest amounts of biogenic amines (BAs) were found in the most processed products but never representing a possible risk for consumer health, according to the toxicity levels reported in literature and regarded as acceptable.

Keywords

Liquid chromatography Evaporative light scattering detection Biogenic amines Fair trade cocoa derivatives 

Notes

Compliance with Ethical Standards

Conflict of Interest

Umile Gianfranco Spizzirri declares that he has no conflict of interest.

Ortensia Ilaria Parisi declares that he has no conflict of interest.

Nevio Picci has received research funds from University of Calabria.

Donatella Restuccia has received research funds from University of Calabria.

Human and Animal Rights Consent

This article does not contain any studies with human or animal subjects.

Informed Consent

Not applicable.

Funding

This work was financially supported by University funds (ex 60 %).

References

  1. Baranowska I, Płonka J (2015) Simultaneous determination of biogenic amines and methylxanthines in foodstuff-sample preparation with HPLC-DAD-FL analysis. Food Anal Methods 8:963–972. doi: 10.1007/s12161-014-9972-x CrossRefGoogle Scholar
  2. Bardócz S (1995) Polyamines in food and their consequences for food quality and human health. Trends Food Sci Technol 6:341–346. doi: 10.1016/S0924-2244(00)89169-4 CrossRefGoogle Scholar
  3. Busto O, Gulasch J, Borrull F (1996) Determination of biogenic amines in wine after precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. J Chromatogr A 737:205–213. doi: 10.1016/0021-9673(96)00022-2 CrossRefGoogle Scholar
  4. Charlesworth JM (1978) Evaporative analyzer as a mass detector for liquid chromatography. Anal Chem 50:1414–1420CrossRefGoogle Scholar
  5. Cirilo MPG, Coelho AFS, Araújo CM, Gonçalves FRB, Nogueira FD, Glória MBA (2003) Profile and levels of bioactive amines in green and roasted coffee. Food Chem 82:397–402. doi: 10.1016/S0308-8146(02)00560-5 CrossRefGoogle Scholar
  6. de Villiers A, Gòreckia T, Lynen F, Szucs R, Sandra P (2007) Improving the universal response of evaporative light scattering detection by mobile phase compensation. J Chromatogr A 1161:183–191. doi: 10.1016/j.chroma.2007.05.078 CrossRefGoogle Scholar
  7. Dugo G mo, Vilasi F, La Torre GL, Pellicanò TM (2006) Reverse phase HPLC/DAD determination of biogenic amines as dansyl derivatives in experimental red wines. Food Chem 95:672–676. doi: 10.1016/j.foodchem.2005.07.001 CrossRefGoogle Scholar
  8. European Food Safety Authority (EFSA) (2011) Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J 9:1–92Google Scholar
  9. Gianotti V, Chiuminatto U, Mazzucco E, Gosetti F, Bottaro M, Frascarolo P, Gennaro MC (2008) A new hydrophilic interaction liquid chromatography tandem mass spectrometry method for the simultaneous determination of seven biogenic amines in cheese. J Chromatogr A 1185:296–300. doi: 10.1016/j.chroma.2008.02.038 CrossRefGoogle Scholar
  10. Guillén-Casla V, Rosales-Conrado N, León-González ME, Pérez-Arribas LV, Polo-Díez LM (2012) Determination of serotonin and its precursors in chocolate samples by capillary liquid chromatography with mass spectrometry detection. J Chromatogr A 1232:158–165. doi: 10.1016/j.chroma.2011.11.037 CrossRefGoogle Scholar
  11. ICCO (2014) Quarterly bulletin of cocoa statistics [WWW Document]. http://www.icco.org/statistics/quarterly-bulletin-cocoa-statistics.html
  12. Lavizzari T, Veciana-Nogués MT, Bover-Cid S, Mariné-Font A, Vidal-Carou MC (2006) Improved method for the determination of biogenic amines and polyamines in vegetable products by ion-pair high-performance liquid chromatography. J Chromatogr A 1129:67–72. doi: 10.1016/j.chroma.2006.06.090 CrossRefGoogle Scholar
  13. Loizzo MR, Menichini F, Picci N, Puoci F, Spizzirri UG, Restuccia D (2013) Technological aspects and analytical determination of biogenic amines in cheese. Trends Food Sci Technol 30:38–55. doi: 10.1016/j.tifs.2012.11.005 CrossRefGoogle Scholar
  14. Loukou Z, Zotou A (2003) Determination of biogenic amines as dansyl derivatives in alcoholic beverages by high-performance liquid chromatography with fluorimetric detection and characterization of the dansylated amines by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 996:103–113. doi: 10.1016/S0021-9673(03)00558-2 CrossRefGoogle Scholar
  15. Mathews BT, Higginson PD, Lyons R, Mitchell JC, Sach NW, Snowden MJ, Taylor MR, Wright AG (2004) Improving quantitative measurements for the evaporative light scattering detector. Chromatographia 60:625–633. doi: 10.1365/s10337-004-0441-3 CrossRefGoogle Scholar
  16. Mayr CM, Schieberle P (2012) Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS. J Agric Food Chem 60:3026–3032. doi: 10.1021/jf204900v CrossRefGoogle Scholar
  17. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  18. Molina M, Silva M (2002) In-capillary derivatization and analysis of amino acids, amino phosphonic acid-herbicides and biogenic amines by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 23:2333–2340. doi: 10.1002/1522-2683(200207)23 CrossRefGoogle Scholar
  19. Önal A (2007) A review: current analytical methods for the determination of biogenic amines in foods. Food Chem 103:1475–1486. doi: 10.1016/j.foodchem.2006.08.028 CrossRefGoogle Scholar
  20. Oracz J, Nebesny E (2014) Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Res Int 55:1–10. doi: 10.1016/j.foodres.2013.10.032 CrossRefGoogle Scholar
  21. Pastore P, Favaro G, Badocco D, Tapparo A, Cavalli S, Saccani G (2005) Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented waveform at Au disposable electrode. J Chromatogr A 1098:111–115. doi: 10.1016/j.chroma.2005.08.065 CrossRefGoogle Scholar
  22. Polati S, Roz M, Angioi S, Gianotti V, Gosetti F, Marengo E, Rinaudo C, Gennaro MC (2005) Statistical evaluation of recovery of 3,4-dichloroaniline in soil as function of particle size and analyte concentration. Talanta 68:93–98. doi: 10.1016/j.talanta.2005.04.045 CrossRefGoogle Scholar
  23. Restuccia D, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI, Iemma F, Picci N (2011) A new method for the determination of biogenic amine in cheese by LC with evaporative light scattering detector. Talanta 85:363–369. doi: 10.1016/j.talanta.2011.03.080
  24. Restuccia D, Spizzirri UG, Puoci F, Cirillo G, Vinci G, Picci N (2012) Determination of phospholipids in food samples. Food Rew Int 28:1–46. doi: 10.1080/87559129.2011.563398 CrossRefGoogle Scholar
  25. Restuccia D, Spizzirri UG, Bonesi M, Tundis R, Menichini F, Picci N, Loizzo MR (2015a) Evaluation of fatty acids and biogenic amines profiles in mullet and tuna roe during six months of storage at 4 °C. J Food Compos Anal 40:52–60. doi: 10.1016/j.jfca.2014.12.014 CrossRefGoogle Scholar
  26. Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Picci N (2015b) Brewing effect on levels of biogenic amines in different coffee samples as determined by LC-UV. Food Chem 175:143–150. doi: 10.1016/j.foodchem.2014.11.134 CrossRefGoogle Scholar
  27. Restuccia D, Spizzirri UG, Puoci F, Picci N (2015c) Determination of biogenic amine profiles in conventional and organic cocoa-based products. Food Addit Contam A 32:1156–1163. doi: 10.1080/19440049.2015.1036322 CrossRefGoogle Scholar
  28. Rohsius C, Elwers S, Lieberei R (2010) Cocoa atlas. German Cocoa and Chocolate Foundation (2010 ed.)Google Scholar
  29. Romero R, Sanchez-Vinas M, Gazquez D, Bagur MG (2002) Characterization of selected Spanish table wine samples according to their biogenic amine content from liquid chromatographic determination. J Agric Food Chem 50:4713–4717. doi: 10.1021/jf025514r CrossRefGoogle Scholar
  30. Saccani G, Tanzi E, Pastore P, Cavalli S, Rey M (2005) Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. J Chromatogr A 1082:43–50. doi: 10.1016/j.chroma.2005.05.030 CrossRefGoogle Scholar
  31. Sagratini G, Fernández-Franzón M, De Berardinis F, Font G, Vittori S, Mañes J (2012) Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography-tandem mass spectrometry. Food Chem 132:537–543. doi: 10.1016/j.foodchem.2011.10.054 CrossRefGoogle Scholar
  32. Santos WC, Souza MR, Cerqueira MMOP, Glória MBA (2003) Bioactive amines formation in milk by Lactococcus in the presence or not of rennet and NaCl at 20 and 32 °C. Food Chem 81:595–606. doi: 10.1016/S0308-8146(02)00502-2 CrossRefGoogle Scholar
  33. Silla-Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231. doi: 10.1016/0168-1605(95)00032-1 CrossRefGoogle Scholar
  34. Spizzirri UG, Restuccia D, Curcio M, Parisi OI, Iemma F, Picci N (2013) Determination of biogenic amines in different cheese samples by LC with evaporative light scattering detector. J Food Compos Anal 29:43–51. doi: 10.1016/j.jfca.2012.09.005 CrossRefGoogle Scholar
  35. Zamora R, Delgado RM, Hidalgo FJ (2012) Formation of β-phenylethylamine as a consequence of lipid oxidation. Food Res Int 46:321–325. doi: 10.1016/j.foodres.2011.12.029 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • U. Gianfranco Spizzirri
    • 1
  • Ortensia Ilaria Parisi
    • 1
  • Nevio Picci
    • 1
  • Donatella Restuccia
    • 1
    Email author
  1. 1.Department of Pharmacy, Health and Nutritional SciencesUniversity of CalabriaArcavacata di RendeItaly

Personalised recommendations