Food Analytical Methods

, Volume 9, Issue 5, pp 1262–1273 | Cite as

Multi-method Approach to Trace the Geographical Origin of Alpine Milk: a Case Study of Tyrol Region

  • Matteo Scampicchio
  • Daniela Eisenstecken
  • Lorenzo De Benedictis
  • Calogero Capici
  • Davide Ballabio
  • Tanja Mimmo
  • Peter Robatscher
  • Luis Kerschbaumer
  • Michael Oberhuber
  • Annemarie Kaser
  • Christian W. Huck
  • Stefano Cesco


This work aims to discriminate milk samples according to their geographical origin, heat treatment, and season of production. This was achieved by combining different techniques, such as isotope ratio mass spectrometry (IRMS), mid- (MIRS) and near-infrared spectroscopies (NIRS), and gas chromatography with flame ionization detector (GC-FID). Milk samples were from North Tyrol (raw milk), South Tyrol (raw milk and high-temperature short time (HTST)), both collected in different seasons. Ultra-high-temperature (UHT) milk samples were from other European regions. These techniques, when used alone, showed limited discrimination capacity. Instead, when such techniques were combined in a multi-variate classification method (PLS-DA), then, milk samples were discriminated according to their geographical origin with an error lower than 5 %. The type of processing and the season were also discriminated. The combination of different techniques compensated their inherent limits and provided a good potential for determining the geographic origin of milk.


Geographical origin Milk Isotope ratio mass spectrometry (IRMS) Near-infrared spectroscopy (NIRS) Fatty acid profile (GC-FID) Alpine region 


Compliance with Ethical Standards


This study received funding from Interreg IV Italy-Austria program (ERDF; project “Originalp” no. 5269 CUP: B27F11001020007).

Conflict of Interest

Matteo Scampicchio declares that he has no conflict of interest. Daniela Eisenstecken declares that she has no conflict of interest. Lorenzo De Benedictis declares that he has no conflict of interest. Calogero Capici declares that he has no conflict of interest. Davide Ballabio declares that he has no conflict of interest. Tanja Mimmo declares that she has no conflict of interest. Peter Robatscher declares that he has no conflict of interest. Luis Kerschbaumer declares that he has no conflict of interest. Michael Oberhuber declares that he has no conflict of interest. Annemarie Kaser declares that she has no conflict of interest. Christian Huck declares that he has no conflict of interest. Stefano Cesco declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.


  1. Asfaha DG, Quetel CR, Thomas F, Horacek M, Wimmer B, Heiss G, Dekant C, Deters-Itzelsberger P, Hoelzl S, Rummel S, Brach-Papa C, Van Bocxstaele M, Jamin E, Baxter M, Heinrich K, Kelly S, Bertoldi D, Bontempo L, Camin F, Larcher R, Perini M, Rossmann A, Schellenberg A, Schlicht C, Froeschl H, Hoogewerff J, Ueckermann H (2011) Combining isotopic signatures of n(Sr-87)/n(Sr-86) and light stable elements (C, N, O, S) with multi-elemental profiling for the authentication of provenance of European cereal samples. J Cereal Sci 53:170–177. doi: 10.1016/j.jcs.2010.11.004 CrossRefGoogle Scholar
  2. Bahar B, Schmidt O, Moloney AP, Scrimgeour CM, Begley IS, Monahan FJ (2008) Seasonal variation in the C, N and S stable isotope composition of retail organic and conventional Irish beef. Food Chem 106:1299–1305. doi: 10.1016/j.foodchem.2007.07.053 CrossRefGoogle Scholar
  3. Balizs G, Jainz A, Horvatovich P (2005) Investigation of the feeding effect on the C-13/C-12 isotope ratio of the hormones in bovine urine using gas chromatography/combustion isotope ratio mass spectrometry. J Chromatogr A 1067:323–330. doi: 10.1016/j.chroma.2004.09.097 CrossRefGoogle Scholar
  4. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA Analytical Methods 5:3790–3798. doi: 10.1039/c3ay40582f CrossRefGoogle Scholar
  5. Bargo F, Delahoy J, Schroeder G, Muller L (2006) Milk fatty acid composition of dairy cows grazing at two pasture allowances and supplemented with different levels and sources of concentrate. Anim Feed Sci Technol 125:17–31. doi: 10.1016/j.anifeedsci.2005.05.010 CrossRefGoogle Scholar
  6. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemom 17:166–173. doi: 10.1002/cem.785 CrossRefGoogle Scholar
  7. Bisig W, Collomb M, Buetikofer U, Sieber R, Bregy M, Etter L (2008) Seasonal variation of fatty acid composition in Swiss mountain’s milk. Agrarforschung 15:38–43Google Scholar
  8. Bittante G, Cecchinato A (2013) Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds. J Dairy Sci 96:5991–6006. doi: 10.3168/jds.2013-6583 CrossRefGoogle Scholar
  9. Bontempo L, Lombardi G, Paoletti R, Ziller L, Camin F (2012) H, C, N and O stable isotope characteristics of alpine forage, milk and cheese. Int Dairy J 23:99–104. doi: 10.1016/j.idairyj.2011.10.005 CrossRefGoogle Scholar
  10. Boutton T, TYRRELL H, PATTERSON B, VARGA G, KLEIN P (1988) Carbon kinetics of milk formation in Holstein cows in late lactation. J Anim Sci 66:2636–2645Google Scholar
  11. Brescia M, Monfreda M, Buccolieri A, Carrino C (2005) Characterisation of the geographical origin of buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chem 89:139–147. doi: 10.1016/j.foodchem.2004.02.016 CrossRefGoogle Scholar
  12. Butler G, Collomb M, Rehberger B, Sanderson R, Eyre M, Leifert C (2009) Conjugated linoleic acid isomer concentrations in milk from high- and low-input management dairy systems. J Sci Food Agric 89:697–705. doi: 10.1002/jsfa.3504 CrossRefGoogle Scholar
  13. Camin F, Wehrens R, Bertoldi D, Bontempo L, Ziller L, Perini M, Nicolini G, Nocetti M, Larcher R (2012) H, C, N and S stable isotopes and mineral profiles to objectively guarantee the authenticity of grated hard cheeses. Anal Chim Acta 711:54–9CrossRefGoogle Scholar
  14. Collomb M, Butikofer U, Sieber R, Jeangros B, Bosset J (2002a) Composition of fatty acids in cow's milk fat produced in the lowlands, mountains and highlands of Switzerland using high-resolution gas chromatography. Int Dairy J 12:649–659. doi: 10.1016/S0958-6946(02)00061-4 CrossRefGoogle Scholar
  15. Collomb M, Butikofer U, Sieber R, Jeangros B, Bosset J (2002b) Correlation between fatty acids in cows’ milk fat produced in the lowlands, mountains and highlands of Switzerland and botanical composition of the fodder international. Int Dairy J 12:661–666. doi: 10.1016/S0958-6946(02)00062-6 CrossRefGoogle Scholar
  16. Collomb M, Butikofer U, Spahni M, Jeangros B, Bosset J (1999) Fatty acid and glyceride composition of cow's milk fat in high- and lowland regions. Sci Des Aliments 19:97–110Google Scholar
  17. Collomb M, Bisig W, Buetikofer U, Sieber R, Bregy M, Etter L (2008) Seasonal variation in the fatty acid composition of milk supplied to dairies in the mountain regions of Switzerland. Dairy Sci Technol 88:631–647. doi: 10.1051/dst:2008029 CrossRefGoogle Scholar
  18. Collomb M, Schmid A, Sieber R, Wechsler D, Ryhanen E (2006) Conjugated linoleic acids in milk fat: variation and physiological effects. Int Dairy J 16:1347–1361. doi: 10.1016/j.idairyj.2006.06.021 CrossRefGoogle Scholar
  19. Crittenden RG, Andrew AS, LeFournour M, Young MD, Middleton H, Stockmann R (2007) Determining the geographic origin of milk in Australasia using multi-element stable isotope ratio analysis. Int Dairy J 17:421–428. doi: 10.1016/j.idairyj.2006.05.012 CrossRefGoogle Scholar
  20. De la Fuente M, Juarez M (2005) Authenticity assessment of dairy products. Crit Rev Food Sci Nutr 45:563–585. doi: 10.1080/10408690490478127 CrossRefGoogle Scholar
  21. De Smet S, Balcaen A, Claeys E, Boeckx P, Van Cleemput O (2004) Stable carbon isotope analysis of different tissues of beef animals in relation to their diet. Rapid Commun Mass Spectrom 18:1227–1232. doi: 10.1002/rcm.1471 CrossRefGoogle Scholar
  22. Downey G, Robert P, Bertrand D, Kelly P (1990) Classification of commercial skim milk powders according to heat-treatment using factorial discriminant-analysis of near-infrared reflectance spectra. Appl Spectrosc 44:150–155. doi: 10.1366/0003702904085796 CrossRefGoogle Scholar
  23. Drivelos SA, Georgiou CA (2012) Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. Trac Trends Anal Chemistry 40:38–51. doi: 10.1016/j.trac.2012.08.003 CrossRefGoogle Scholar
  24. Ehtesham E, Hayman AR, McComb KA, Van Hale R, Frew RD (2013) Correlation of geographical location with stable isotope values of hydrogen and carbon of fatty acids from New Zealand milk and bulk milk powder. J Agric Food Chem 61:8914–8923. doi: 10.1021/jf4024883 CrossRefGoogle Scholar
  25. Elgersma A, Tamminga S, Ellen G (2006) Modifying milk composition through forage. Anim Feed Sci Technol 131:207–225. doi: 10.1016/j.anifeedsci.2006.06.012 CrossRefGoogle Scholar
  26. Elsalam M, Alkhamy A, Eletriby H (1986) Evaluation of the milkoscan-104-a/b for determination of milk-fat, protein and lactose in milk of some mammals. Food Chem 19:213–224. doi: 10.1016/0308-8146(86)90071-3 CrossRefGoogle Scholar
  27. Falchero L, Lombardi G, Gorlier A, Lonati M, Odoardi M, Cavallero A (2010) Variation in fatty acid composition of milk and cheese from cows grazed on two alpine pastures. Dairy Sci Technol 90:657–672. doi: 10.1051/dst/2010035 CrossRefGoogle Scholar
  28. Hamburg MA (2011) Advancing regulatory science. Science 331:987–987. doi: 10.1126/science.1204432 CrossRefGoogle Scholar
  29. Heigl N, Greiderer A, Petter CH, Kolomiets O, Siesler HW, Ulbricht M, Bonn GK, Huck CW (2008) Simultaneous determination of the micro-, meso-, and macropore size fractions of porous polymers by a combined use of Fourier transform near-infrared diffuse reflection spectroscopy and multivariate techniques. Anal Chem 80:8493–8500. doi: 10.1021/ac8013059 CrossRefGoogle Scholar
  30. Karoui R, De Baerdemaeker J (2007) A review of the analytical methods coupled with chemometric tools for the determination of the quality and identity of dairy products. Food Chem 102:621–640. doi: 10.1016/j.foodchem.2006.05.042 CrossRefGoogle Scholar
  31. Kesek M, Szulc T, Zielak-Steciwko A (2014) Genetic, physiological and nutritive factors affecting the fatty acid profile in cows’ milk—a review. Anim Sci Paper Rep 32:95–105Google Scholar
  32. Kim NS, Lee JH, Han KM, Kim JW, Cho S, Kim J (2014) Discrimination of commercial cheeses from fatty acid profiles and phytosterol contents obtained by GC and PCA. Food Chem 143:40–47. doi: 10.1016/j.foodchem.2013.07.083 CrossRefGoogle Scholar
  33. Knobbe N, Vogl J, Pritzkow W, Panne U, Fry H, Lochotzke HM, Preiss-Weigert A (2006) C and N stable isotope variation in urine and milk of cattle depending on the diet. Anal Bioanal Chem 386:104–108. doi: 10.1007/s00216-006-0644-6 CrossRefGoogle Scholar
  34. Kornexl B, Werner T, Rossmann A, Schmidt H (1997) Measurement of stable isotope abundances in milk and milk ingredients—a possible tool for origin assignment and quality control. Zeitschrift Fur Lebensmittel-Untersuchung Und-Forschung A-Food Res and Technol 205:19–24. doi: 10.1007/s002170050117 CrossRefGoogle Scholar
  35. Maerk J, Andre M, Karner M, Huck CW (2010a) Prospects for multivariate classification of a pharmaceutical intermediate with near-infrared spectroscopy as a process analytical technology (PAT) production control supplement. Eur J Pharm Biopharm 76:320–327. doi: 10.1016/j.ejpb.2010.06.015 CrossRefGoogle Scholar
  36. Maerk J, Karner M, Andre M, Rueland J, Huck CW (2010b) Online process control of a pharmaceutical intermediate in a fluidized-bed drier environment using near-infrared spectroscopy. Anal Chem 82:4209–4215. doi: 10.1021/ac1004579 CrossRefGoogle Scholar
  37. Manca G, Franco MA, Versini G, Camin F, Rossmann A, Tola A (2006) Correlation between multielement stable isotope ratio and geographical origin in Peretta cows’ milk cheese. J Dairy Sci 89:831–839CrossRefGoogle Scholar
  38. Manca G, Camin F, Coloru GC, Del Caro A, Depentori D, Franco MA, Versini G (2001) Characterization of the geographical origin of pecorino sardo cheese by casein stable isotope (C-13/C-12 and N-15/N-14) ratios and free amino acid ratios. J Agric Food Chem 49:1404–1409. doi: 10.1021/jf000706c CrossRefGoogle Scholar
  39. Molkentin J, Giesemann A (2010) Follow-up of stable isotope analysis of organic versus conventional milk. Anal Bioanal Chem 398:1493–1500. doi: 10.1007/s00216-010-3995-y CrossRefGoogle Scholar
  40. Oliveri P, Downey G (2012) Multivariate class modeling for the verification of food-authenticity claims. Trac-Trends Anal Chem 35:74–86. doi: 10.1016/j.trac.2012.02.005 CrossRefGoogle Scholar
  41. Palmquist D, Beaulieu A, Barbano D (1993) Feed and animal factors influencing milk-fat composition. J Dairy Sci 76:1753–1771. doi: 10.3168/jds.S0022-0302 CrossRefGoogle Scholar
  42. Petter CH, Heigl N, Bakry R, Bonn GK, Ritsch A, Huck CW (2009) Quantification of low-density and high-density lipoproteins in human serum by material enhanced infrared spectroscopy (MEIRS). Curr Med Chem 16:4601–4608CrossRefGoogle Scholar
  43. Piasentier E, Valusso R, Camin F, Versini G (2003) Stable isotope ratio analysis for authentication of lamb meat. Meat Sci 64:239–247. doi: 10.1016/S0309-1740(02)00183-3 CrossRefGoogle Scholar
  44. Pillonel L, Badertscher R, Froidevaux P, Haberhauer G, Holzl S, Horn P, Jakob A, Pfammatter E, Piantini U, Rossmann A, Tabacchi R, Bosset J (2003) Stable isotope ratios, major, trace and radioactive elements in emmental cheeses of different origins Lebensmittel-Wissenschaft Und-Technologie-Food. Sci Technol 36:615–623. doi: 10.1016/S0023-6438(03)00081-1 Google Scholar
  45. Pillonel L, Dufour E, Schaller E, Bosset J, De Baerdemaeker J, Karoui R (2007) Prediction of colour of European Emmental cheeses by using near infrared spectroscopy: a feasibility study. Eur Food Res Technol 226:63–69. doi: 10.1007/s00217-006-0509-4 CrossRefGoogle Scholar
  46. Reid L, O'Donnell C, Downey G (2006) Recent technological advances for the determination of food authenticity. Trends Food Sci Technol 17:344–353. doi: 10.1016/j.tifs.2006.01.006 CrossRefGoogle Scholar
  47. Richter EK, Spangenberg JE, Klevenhusen F, Soliva CR, Kreuzer M, Leiber F (2012) Stable carbon isotope composition of c9, t11-conjugated linoleic acid in cow’s milk as related to dietary fatty acids. Lipids 47:161–169. doi: 10.1007/s11745-011-3599-0 CrossRefGoogle Scholar
  48. Sacco D, Brescia MA, Sgaramella A, Casiello G, Buccolieri A, Ogrinc N, Sacco A (2009) Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chem 114:1559–1563. doi: 10.1016/j.foodchem.2008.11.056 CrossRefGoogle Scholar
  49. Sanchez A, Sierra D, Luengo C, Corrales JC, de la Fe C, Morales CT, Contreras A, Gonzalo C (2007) Evaluation of the MilkoScan FT 6000 milk analyzer for determining the freezing point of goat’s milk under different analytical conditions. J Dairy Sci 90:3153–3161. doi: 10.3168/jds.2007-0038 CrossRefGoogle Scholar
  50. Scampicchio M, Mimmo T, Capici C, Huck C, Innocente N, Drusch S, Cesco S (2012) Identification of milk origin and process-induced changes in milk by stable isotope ratio mass spectrometry. J Agric Food Chem 60. doi:  10.1021/jf302846j
  51. Silva AV, Helie JF, Caxito FA, Monardes H, Mustafa AF, Stevenson R (2014) Multi-stable isotope analysis as a tool for assessing the geographic provenance of dairy products: a case study using buffalo's milk and cheese samples from the Amazon basin, Brazil. Int Dairy J 35:107–110. doi: 10.1016/j.idairyj.2013.10.019 CrossRefGoogle Scholar
  52. Tosato A (2013) The protection of traditional foods in the EU: traditional specialties guaranteed. Eur Law J 19:545–576. doi: 10.1111/eulj.12040 CrossRefGoogle Scholar
  53. Tsenkova R, Atanassova S, Ozaki Y, Toyoda K, Itoh K (2001) Near-infrared spectroscopy for biomonitoring: influence of somatic cell count on cow’s milk composition analysis. Int Dairy J 11:779–783. doi: 10.1016/S0958-6946(01)00110-8 CrossRefGoogle Scholar
  54. Tsenkova R, Atanassova S, Itoh K, Ozaki Y, Toyoda K (2000) Near infrared spectroscopy for biomonitoring: cow milk composition measurement in a spectral region from 1,100 to 2,400 nanometers. J Anim Sci 78:515–522Google Scholar
  55. Velcovska S, Sadilek T (2014) Analysis of quality labels included in the European Union quality schemes Czech. J Food Sci 32:194–203Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Matteo Scampicchio
    • 1
  • Daniela Eisenstecken
    • 2
    • 3
  • Lorenzo De Benedictis
    • 3
  • Calogero Capici
    • 1
  • Davide Ballabio
    • 4
  • Tanja Mimmo
    • 1
  • Peter Robatscher
    • 3
  • Luis Kerschbaumer
    • 5
  • Michael Oberhuber
    • 3
  • Annemarie Kaser
    • 5
  • Christian W. Huck
    • 2
  • Stefano Cesco
    • 1
  1. 1.Free University of BolzanoBolzanoItaly
  2. 2.Institute of Analytical Chemistry and Radiochemistry, CCB-Center for Chemistry and BiomedicineLeopold-Franzens UniversityInnsbruckAustria
  3. 3.Laimburg Research Centre for Agriculture and ForestryAuer (Ora)Italy
  4. 4.Department of Earth and Environmental SciencesUniversity of Milano BicoccaMilanoItaly
  5. 5.Federazione Latterie Alto Adige, Gen. und landw. Ges.BolzanoItaly

Personalised recommendations