Skip to main content
Log in

Simultaneous Determination of Aflatoxins in Pistachio Using Ultrasonically Stabilized Chloroform/Water Emulsion and HPLC

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Simultaneous determinations of aflatoxins (AFs) in pistachio at μg/kg concentrations were performed using ultrasonic chloroform/water emulsion microextraction (USAEME) and HPLC-UV measurement. A chloroform/water emulsion was stabilized using ultrasonic agitation for the purification of AFs extracted from pistachios using methanol/water. Because the method effectively purified and concentrated AFs, the AFs could be measured directly and without further preconcentration using HPLC-UV. Preparation of AF derivatives for fluorescence measurement was not required. In the optimized procedure, the AF calibration curves were linear for all AFs with correlation coefficients that ranged from 0.9913 to 0.9994. The detection limit was between 0.3 and 1.4 μg/kg, and quantification limit was obtained between 1.1 and 3.2 μg/kg (n = 3); the largest relative standard deviation was obtained <9.78 % (n = 3) at 3 μg/kg, and recoveries ranged from 81.2 to 101.6 % at spiking levels of 0.4, 0.8, 2, and 4 μg/kg. Application of this method to the measurement of AFs in pistachio samples indicated that USAEME coupled with HPLC-UV can determine trace AF levels. The USAEME method is simple, sensitive, and cost-effective in comparison to previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afzali D, Ghanbarian M, Mostafavi A, Shamspur T, Ghaseminezhad S (2012) A novel method for high preconcentration of ultra trace amounts of B1, B2, G1 and G2 aflatoxins in edible oils by dispersive liquid–liquid microextraction after immunoaffinity column clean-up. J Chromatogr A 1247:35–41. doi:10.1016/j.chroma.2012.05.051

    Article  CAS  Google Scholar 

  • Arroyo-Manzanares N, García-Campaña AM, Gámiz-Gracia L (2013) Multiclass mycotoxin analysis in Silybum marianum by ultra high performance liquid chromatography–tandem mass spectrometry using a procedure based on QuEChERS and dispersive liquid–liquid microextraction. J Chromatogr A 1282:11–19. doi:10.1016/j.chroma.2013.01.072

    Article  CAS  Google Scholar 

  • Benford D, Leblanc J-C, Setzer RW (2010) Application of the margin of exposure (MoE) approach to substances in food that are genotoxic and carcinogenic: example: aflatoxin B1 (AFB1). Food Chem Toxicol 48(Supplement 1):S34–S41. doi:10.1016/j.fct.2009.10.037

    Article  CAS  Google Scholar 

  • Bijl J, van Peteghem C (1985) Rapid extraction and sample clean-up for the fluorescence densitometric determination of aflatoxin M1 in milk and mil powder. Anal Chim Acta 170:149–152. doi:10.1016/S0003-2670(00)81738-9

    Article  CAS  Google Scholar 

  • Campone L, Piccinelli AL, Celano R, Rastrelli L (2011) Application of dispersive liquid–liquid microextraction for the determination of aflatoxins B1, B2, G1 and G2 in cereal products. J Chromatogr A 1218:7648–7654. doi:10.1016/j.chroma.2011.05.028

    Article  CAS  Google Scholar 

  • Chang P-K, Hua S-ST (2007) Nonaflatoxigenic Aspergillus flavus TX9-8 competitively prevents aflatoxin accumulation by A. flavus isolates of large and small sclerotial morphotypes. Int J Food Microbiol 114:275–279. doi:10.1016/j.ijfoodmicro.2006.09.017

    Article  CAS  Google Scholar 

  • Corcuera L-A, Ibáñez-Vea M, Vettorazzi A, González-Peñas E, Cerain ALD (2011) Validation of a UHPLC-FLD analytical method for the simultaneous quantification of aflatoxin B1 and ochratoxin a in rat plasma, liver and kidney. J Chromatogr B 879:2733–2740. doi:10.1016/j.jchromb.2011.07.039

    Article  CAS  Google Scholar 

  • Cunha SC, Fernandes JO (2010) Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid–liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography–mass spectrometry (MD–GC/MS). Talanta 83:117–125. doi:10.1016/j.talanta.2010.08.048

    Article  CAS  Google Scholar 

  • De Jesus AE, Gorst-Allman CP, Horak RM, Vleggaar R (1988) Large-scale purification of the mycotoxins aflatoxin B1, B2 and G1. J Chromatogr A 450:101–104. doi:10.1016/S0021-9673(00)90719-2

    Article  Google Scholar 

  • Edinboro LE, Karnes HT (2005) Determination of aflatoxin B1 in sidestream cigarette smoke by immunoaffinity column extraction coupled with liquid chromatography/mass spectrometry. J Chromatogr A 1083:127–132. doi:10.1016/j.chroma.2005.06.032

    Article  CAS  Google Scholar 

  • Farzaneh M, Shi Z-Q, Ghassempour A, Sedaghat N, Ahmadzadeh M, Mirabolfathy M, Javan-Nikkhah M (2012) Aflatoxin B1 degradation by Bacillus subtilis UTBSP1 isolated from pistachio nuts of Iran. Food Control 23:100–106. doi:10.1016/j.foodcont.2011.06.018

    Article  CAS  Google Scholar 

  • Ghali R, Belouaer I, Hdiri S, Ghorbel H, Maaroufi K, Hedilli A (2009) Simultaneous HPLC determination of aflatoxins B1, B2, G1 and G2 in Tunisian sorghum and pistachios. J Food Compos Anal 22:751–755. doi:10.1016/j.jfca.2009.04.009

    Article  CAS  Google Scholar 

  • Herzallah SM (2009) Determination of aflatoxins in eggs, milk, meat and meat products using HPLC fluorescent and UV detectors. Food Chem 114:1141–1146. doi:10.1016/j.foodchem.2008.10.077

    Article  CAS  Google Scholar 

  • Hutchins J, Lee YJ, Tyczkowska K, Hagler W Jr (1989) Evaluation of silica cartridge purification and hemiacetal formation for liquid chromatographic determination of aflatoxins in corn. Arch Environ Contam Toxicol 18:319–326. doi:10.1007/BF01062355

    Article  CAS  Google Scholar 

  • Kmieciak S (1976) Determination of aflatoxins in grounnut meals by high pperformance liquid chromatography. Z Lebensm Unters Forsch 160(3):321–4. doi:10.1007/BF01132298

  • Moss MO (2002) Risk assessment for aflatoxins in foodstuffs. Int Biodeterior Biodegrad 50:137–142. doi:10.1016/S0964-8305(02)00078-1

    Article  CAS  Google Scholar 

  • Park D, Neshiem S, Truckess M, Stack M, Newell R (1990) Determination of aflatoxin levels in peanut butter using HPLC and ELISA procedures: inter-laboratory comparison. J Assoc Off Anal Chem 73:260–266

    CAS  Google Scholar 

  • Patey AL, Sharman M, Gilbert J (1990) Determination of aflatoxin levels in peanut butter using HPLC and ELISA procedures: inter-laboratory comparison. Mycotoxin Res 6:2–6. doi:10.1007/BF03192132

    Article  CAS  Google Scholar 

  • Peña D, Anguiano RG, Arredondo JM (1992) Modification of the method 1 AOAC (CB-method) for the detection of aflatoxins. Bull Environ Contam Toxicol 49:485–489. doi:10.1007/BF00196287

    Article  Google Scholar 

  • Ramkumar A, Ponnusamy VK, Jen J-F (2013) Rapid determination of indapamide in human urine using novel low-density solvent based ultrasound assisted emulsification microextraction coupled with high performance liquid chromatography-variable wavelength detection. Anal Methods 5:2572–2577

    Article  CAS  Google Scholar 

  • Ramos Payán M, Bello López MÁ, Fernández-Torres R, Callejón Mochón M, Gómez Ariza JL (2010) Application of hollow fiber-based liquid-phase microextraction (HF-LPME) for the determination of acidic pharmaceuticals in wastewaters. Talanta 82:854–858. doi:10.1016/j.talanta.2010.05.022

    Article  Google Scholar 

  • Ramos Payán M, López MÁB, Fernández-Torres R, Navarro MV, Mochón MC (2011) Hollow fiber-based liquid phase microextraction (HF-LPME) for a highly sensitive HPLC determination of sulfonamides and their main metabolites. J Chromatogr B 879:197–204. doi:10.1016/j.jchromb.2010.12.006

    Article  Google Scholar 

  • Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo JC, Cela R (2008) Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J Chromatogr A 1190:27–38. doi:10.1016/j.chroma.2008.02.091

    Article  CAS  Google Scholar 

  • Rincón AA, Pino V, Ayala JH, Afonso AM (2011) Headspace-single drop microextraction (HS-SDME) in combination with high-performance liquid chromatography (HPLC) to evaluate the content of alkyl- and methoxy-phenolic compounds in biomass smoke. Talanta 85:1265–1273. doi:10.1016/j.talanta.2011.05.046

    Article  Google Scholar 

  • Sirhan AY, Tan GH, Wong RCS (2011) Method validation in the determination of aflatoxins in noodle samples using the QuEChERS method (Quick, Easy, Cheap, Effective, Rugged and Safe) and high performance liquid chromatography coupled to a fluorescence detector (HPLC–FLD). Food Control 22:1807–1813. doi:10.1016/j.foodcont.2011.04.007

    Article  CAS  Google Scholar 

  • Tavčar-Kalcher G, Vrtač K, Pestevšek U, Vengušt A (2007) Validation of the procedure for the determination of aflatoxin B1 in animal liver using immunoaffinity columns and liquid chromatography with postcolumn derivatisation and fluorescence detection. Food Control 18:333–337. doi:10.1016/j.foodcont.2005.10.016

    Article  Google Scholar 

  • Tuinstra LGMT, Haasnoot W (1983) Rapid determination of aflatoxin B1 in dutch feeding stuffs by high-performance liquid chromatography and post-column derivatization. J Chromatogr A 282:457–462. doi:10.1016/S0021-9673(00)91622-4

    Article  CAS  Google Scholar 

  • Var I, Kabak B, Gök F (2007) Survey of aflatoxin B1 in helva, a traditional Turkish food, by TLC. Food Control 18:59–62. doi:10.1016/j.foodcont.2005.08.008

    Article  CAS  Google Scholar 

  • Vosough M, Salemi A (2011) Exploiting second-order advantage using PARAFAC2 for fast HPLC-DAD quantification of mixture of aflatoxins in pistachio nuts. Food Chem 127:827–833. doi:10.1016/j.foodchem.2011.01.017

    Article  CAS  Google Scholar 

  • Vosough M, Bayat M, Salemi A (2010) Matrix-free analysis of aflatoxins in pistachio nuts using parallel factor modeling of liquid chromatography diode-array detection data. Anal Chim Acta 663:11–18. doi:10.1016/j.aca.2010.01.039

    Article  CAS  Google Scholar 

  • Wang Y et al (2012) HPLC determination of aflatoxin M1 in liquid milk and milk powder using solid phase extraction on OASIS HLB. Food Control 28:131–134. doi:10.1016/j.foodcont.2012.04.037

    Article  Google Scholar 

  • Wang L et al (2013) Simultaneous determination of aflatoxin B1 and ochratoxin A in licorice roots and fritillary bulbs by solid-phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry. Food Chem 138:1048–1054. doi:10.1016/j.foodchem.2012.11.066

    Article  CAS  Google Scholar 

  • Xu X, Liu X, Li Y, Ying Y (2013) A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens Bioelectron 47:361–367. doi:10.1016/j.bios.2013.03.048

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Mr. Bayati, a MSc student, declares that he has no conflict of interest. Dr. Akbar Malekpour declares that he has no conflict of interest. During this project, he was an employee of the University of Isfahan. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Malekpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malekpour, A., Bayati, S. Simultaneous Determination of Aflatoxins in Pistachio Using Ultrasonically Stabilized Chloroform/Water Emulsion and HPLC. Food Anal. Methods 9, 805–811 (2016). https://doi.org/10.1007/s12161-015-0254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0254-z

Keywords

Navigation