Skip to main content
Log in

A Comparative Study for Separation, Preconcentration and Determination of Tartrazine (E 102) in Soft Drink Samples by Two Kinds of Amberlite Resins

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Separation, preconcentration, and spectrophotometric determination of tartrazine (E 102) was performed by solid-phase extraction methods with using spectrophotometry. For this purpose, Amberlite XAD-1180 and Amberlite XAD-16 resins and mini-chromatographic column were used. All absorbance measurements of the dye were determined at 427 nm. Analytical parameters including pH, sample and eluent flow rates, eluent type, ionic strength, sample volume, and adsorption isotherms were investigated and optimized. Under optimum condition interference effect of main cations, some anions and widely used dyes were examined. Detection limits of the proposed methods were determined as 5.7 and 1.2 μg L−1 for XAD-1180 and XAD-16 resins, respectively. Linear dynamic ranges of the methods were found between 0.4–30 and 0.4–12 μg mL−1 of tartrazine for XAD-1180 and XAD-16 resins, respectively. The preconcentration factors were found as 60 and 80 for XAD-1180 and XAD-16 columns, respectively. Relative standard deviations were lower than 7 % throughout all experiments for two methods. Developed methods were validated and checked with determination of tartrazine levels in soft drink samples by addition of analyte. The comparisons of the methods were performed by the analysis of tartrazine contents of food samples. Tartrazine concentrations, investigated solid samples, ranged between 146 and 391 μg/g. Tartrazine content of liquid sample was found as 7.4 and 7.3 μg/mL for X1180 and X16 methods, respectively. The results suggest that the methods are suitable for the determination of tartrazine. Very accurate results were obtained for spiked values of the tartrazine into the food samples. In addition to accuracy, the method is simple, environmental friendly, and economical for the determination of tartrazine level in food samples. In addition of analytical parameters, adsorption and isotherm studies were performed for two kinds of Amberlite resins. It was observed that the methods fitted the linear form of Freundlich isotherm model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acharya S, Rebery B (2009) Fluorescence spectrometric study of eosin yellow dye–surfactant interactions. Arab J Chem 2:7–12. doi:10.1016/j.arabjc.2009.07.010

    Article  Google Scholar 

  • Ahamed MEH, Mbianda XY, Mulaba-Bafubiandi AF, Marjanovic L (2013) Ion imprinted polymers for the selective extraction of silver(I) ions in aqueous media: kinetic modeling and isotherm studies. React Funct Polym 73:474–483. doi:10.1016/j.reactfunctpolym.2012.11.011

    Article  CAS  Google Scholar 

  • EFSA (2010) Scientific opinion on the appropriateness of the food azo-colours tartrazine (E 102), sunset yellow FCF (E 110), carmoisine (E 122), amaranth (E 123), ponceau 4R (E 124), allura red AC (E 129), brilliant black BN (E 151), brown FK (E 154), brown HT (E 155) and litholrubine BK (E 180) for inclusion in the list of food ingredients set up in annex IIIa of directive 2000/13/EC. EFSA J 8(10):1778. doi:10.2903/j.efsa.2010.1778

    Google Scholar 

  • Fontanals N, Marcé RM, Borrul F (2011) On-line solid-phase extraction coupled to hydrophilic interaction chromatography–mass spectrometry for the determination of polar drugs. J Chromatogr A 1218:5975–5980. doi:10.1016/j.chroma.2010.12.028

    Article  CAS  Google Scholar 

  • Ghaedi M, Shokrollahi A, Tavallali H, Shojaiepoor F, Keshavarzi B, Hossainian H, Soylak M, Purkait MK (2011) Activated carbon and multiwalled carbon nanotubes an efficient adsorbents for kinetic and equilibrium study of removal of arsenazo (III) and methyl red dyes from waste water. Toxicol Environ Chem 93:438–449. doi:10.1080/02772248.2010.540244

    Article  CAS  Google Scholar 

  • Ghaedi M, Ghaedi M, Kokhdan SN, Sahraei R, Daneshfar A (2013) Palladium, silver, and zinc oxide nanoparticles loaded on activated carbon as adsorbent for removal of bromophenol red from aqueous solution. J Ind Eng Chem 19:1209–1217. doi:10.1016/j.jiec.2012.12.020

    Article  CAS  Google Scholar 

  • Ghoreishi SM, Behpour M, Golestaneh M (2012) Simultaneous determination of sunset yellow and tartrazine in soft drinks using gold nanoparticles carbon paste electrode. Food Chem 132:637–641. doi:10.1016/j.foodchem.2011.10.103

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Nayak A, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye-tartrazine by photodegradation on titanium dioxide surface. Mat Sci Eng C 31:1062–1067. doi:10.1016/j.msec.2011.03.006

    Article  CAS  Google Scholar 

  • Hajati S, Ghaedi M, Barazesh B, Karimi F, Sahraei R, Daneshfar A, Asghari A (2014a) Application of high order derivative spectrophotometry to resolve the spectra overlap between BG and MB for the simultaneous determination of them: ruthenium nanoparticle loaded activated carbon as adsorbent. J Ind Eng Chem 20:2421–2427. doi:10.1016/j.jiec.2013.10.022

    Article  CAS  Google Scholar 

  • Hajati S, Ghaedi M, Karimi F, Barazesh B, Sahraei R, Daneshfar A (2014b) Competitive adsorption of direct yellow 12 and reactive orange 12 on ZnS:Mn nanoparticles loaded on activated carbon as novel adsorbent. J Ind Eng Chem 20:564–571. doi:10.1016/j.jiec.2013.05.015

    Article  CAS  Google Scholar 

  • Hurtaud-Pessel D, Couëdor P, Verdon E (2011) Liquid chromatography–tandem mass spectrometry method for the determination of dye residues in aquaculture products: development and validation. J Chromatogr A 1218:1632–1645. doi:10.1016/j.chroma.2011.01.061

    Article  CAS  Google Scholar 

  • Kefi BB, El Atrache LL, Kochkar H, Ghorbel A (2011) TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. J Environ Sci 23(5):860–867. doi:10.1016/S1001-0742(10)60481-0

    Article  CAS  Google Scholar 

  • Li YH, Yang T, Qi XL, Qiao YW, Deng AP (2008) Development of a group selective molecularly imprinted polymers based solid phase extraction of malachite gren from fish water and fish feed samples. Anal Chim Acta 624:317–325. doi:10.1016/j.aca.2008.07.004

    Article  CAS  Google Scholar 

  • Meadows F, Narayanan N, Patonay G (2000) Determination of protein–dye association by near infrared fluorescence-detected circular dichroism. Talanta 50:1149–1155. doi:10.1016/S0039-9140(99)00206-4

    Article  CAS  Google Scholar 

  • Mittal A, Kurup L, Mittal J (2007) Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers. J Hazard Mater 146:243–248. doi:10.1016/j.jhazmat.2006.12.012

    Article  CAS  Google Scholar 

  • Murty MRVS, Chary NS, Prabhakar S, Raju NP, Vairamani M (2009) Simultaneous quantitative determination of Sudan dyes using liquid chromatography–atmospheric pressure photoionization–tandem mass spectrometry. Food Chem 115:1556–1562. doi:10.1016/j.foodchem.2009.02.005

    Article  CAS  Google Scholar 

  • Muthuraman G, Teng TT (2010) Solvent extraction of methyl violet with salicylic acid from aqueous acidic solutions. Desalination 263:113–117. doi:10.1016/j.desal.2010.06.046

    Article  CAS  Google Scholar 

  • Pourreza N, Zareian M (2009) Determination of orange II in food samples after cloud point extraction using mixed micelles. J Hazard Mater 165:1124–1127. doi:10.1016/j.jhazmat.2008.10.132

    Article  CAS  Google Scholar 

  • Puoci F, Garreffa C, Iemma F, Muzzalupo R, Spizzirri UG, Picci N (2005) Molecularly imprinted solid phase extraction for detection of sudan I in food matrices. Food Chem 93:349–353. doi:10.1016/j.foodchem.2004.11.014

    Article  CAS  Google Scholar 

  • Purkait MK, Vijay S, DasGupta SS, De S (2004) Separation of congo red by surfactant mediated cloud point extraction. Dyes Pigments 63:151–159. doi:10.1016/j.dyepig.2004.01.010

    Article  CAS  Google Scholar 

  • Purkait MK, DasGupta S, De S (2009) Determination of thermodynamic parameters for the cloud point extraction of different dyes using TX-100 and TX-114. Desalination 244:130–138. doi:10.1016/j.desal.2008.04.042

    Article  CAS  Google Scholar 

  • Šafařík I, Šafaříková M (2002) Detection of low concentrations of malachite c and crystal violet in water. Water Res 36:196–200. doi:10.1016/S0043-1354(01)00243-3

    Article  Google Scholar 

  • Sahraei R, Farmany A, Mortazavi SS (2013) A nanosilver-based spectrophotometry method for sensitive determination of tartrazine in food samples. Food Chem 138:1239–1242. doi:10.1016/j.foodchem.2012.11.029

    Article  CAS  Google Scholar 

  • Schenone AV, Culzoni MJ, Marsili NR, Goicoechea HC (2013) Determination of tartrazine in beverage samples by stopped-flow analysis and three-way multivariate calibration of non-linear kinetic-spectrophotometric data. Food Chem 138:1928–1935. doi:10.1016/j.foodchem.2012.11.126

    Article  CAS  Google Scholar 

  • Shakerian F, Dadfarnia S, Shabani AMH (2012) Synthesis and application of nano-pore size ion imprinted polymer for solid phase extraction and determination of zinc in different matrices. Food Chem 134:488–493. doi:10.1016/j.desal.2008.04.042

    Article  CAS  Google Scholar 

  • Soylak M, Cihan Z (2013) Solid-phase extraction of tartrazine on multiwalled carbon nanotubes for separation and enrichment. Toxicol Environ Chem 95(4):559–566. doi:10.1080/02772248.2013.801978

    Article  CAS  Google Scholar 

  • Soylak M, Unsal YE, Tuzen M (2011a) Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food Chem Toxicol 49:1183–1187. doi:10.1016/j.fct.2011.02.013

    Article  CAS  Google Scholar 

  • Soylak M, Unsal YE, Yilmaz E, Tuzen M (2011b) Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food Chem Toxicol 49:1796–1799. doi:10.1016/j.fct.2011.04.030

    Article  CAS  Google Scholar 

  • Tanaka T (2006) Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food Chem Toxicol 44:179–187. doi:10.1016/j.fct.2005.06.011

    Article  CAS  Google Scholar 

  • Tatara E, Materna K, Schaadt A, Bart HJ, Szymanowski J (2005) Cloud point extraction of direct yellow. Environ Sci Technol 39:3110–3115. doi:10.1021/es049381x

    Article  CAS  Google Scholar 

  • Tavakoli M, Shemirani F, Hajimahmoodi M (2014) Magnetic mixed hemimicelles solid-phase extraction of three food colorants from real samples. Food Anal Methods 7:100–108. doi:10.1007/s12161-013-9603-y

    Article  Google Scholar 

  • Ueda AC, Oliveira LH, Hioka N, Aznar M (2011) Liquid-liquid extraction of basic yellow 28, basic blue 41, and basic red 46 dyes from aqueous solutions with reverse micelles. J Chem Eng Data 56:652–657. doi:10.1021/je1008558

    Article  CAS  Google Scholar 

  • Wu YC, Huang SD (1998) Cloud point preconcentration and liquid chromatographic determination of aromatic amines in dyestuffs. Anal Chim Acta 373:197–206. doi:10.1016/S0003-2670(98)00393-6

    Article  CAS  Google Scholar 

  • Yan H, Qiao J, Pei Y, Long T, Ding W, Xie K (2012) Molecularly imprinted solid-phase extraction coupled to liquid chromatography for determination of Sudan dyes in preserved beancurds. Food Chem 132:649–654. doi:10.1016/j.foodchem.2011.10.105

    Article  CAS  Google Scholar 

  • Zhao C, Zhao T, Liu X, Zhang H (2010) A novel molecularly imprinted polymer for simultaneous extraction and determination of sudan dyes by on-line solid phase extraction and high performance liquid chromatography. J Chromatogr A 1217:6995–7002. doi:10.1016/j.chroma.2010.09.005

    Article  CAS  Google Scholar 

  • Zhao L, Zeng B, Zhao F (2014) Electrochemical determination of tartrazine using a molecularly imprinted polymer—multiwalled carbon nanotubes—ionic liquid supported Pt nanoparticles composite film coated electrode. Electrochim Acta 146:611–617. doi:10.1016/j.electacta.2014.08.108

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Abdullah Taner Bişgin declares that he has no conflict of interest.

Mustafa Uçan declares that he has no conflict of interest.

İbrahim Narin declares that he has no conflict of interest.

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Narin.

Additional information

This study belongs to Abdullah Taner BİŞGİN’s doctoral thesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bişgin, A.T., Uçan, M., Narin, İ. et al. A Comparative Study for Separation, Preconcentration and Determination of Tartrazine (E 102) in Soft Drink Samples by Two Kinds of Amberlite Resins. Food Anal. Methods 8, 2141–2149 (2015). https://doi.org/10.1007/s12161-015-0099-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0099-5

Keywords

Navigation