Skip to main content

Advertisement

Log in

Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Probiotics are constituents of functional foods, which when administered in appropriate amounts confer a benefit to the host. Research studies performed on probiotics and gut microbiota along recent years have been focused on investigating the correlation between their molecular features and their impacts on individual health status. Consequently, many present and future challenges are being raised to elucidate the molecular bases of their interaction-mediated systemic effects, along with the ability to manipulate them for preventive and therapeutic interventions. Moreover, insights derived from the parallel evolution of “omics” technologies, with applications in different fields of biomedicine, are being efficiently transferred to this area of molecular microbiology. Thus, the present work compiles a summary of the general and useful omics applications: genomics, metagenomics, transcriptomics, proteomics, metabolomics, phenomics, and recently, integromics and interactomics and their putative use for validating models of interactions of the better-known probiotic microorganisms administered Lactobacillus and Bifidobacterium species. The impact on molecular resistance features, formula preparation, and route administration are also discussed. Omics tools will generate large amounts of data that, once correctly interpreted, are expected to rapidly validate the knowledge of probiotic molecular fundaments that trigger important positive human biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aaltonen J, Ojala T, Laitinen K, Piirainen TJ, Poussa TA, Isolauri E (2008) Evidence of infant blood pressure programming by maternal nutrition during pregnancy: a prospective randomized controlled intervention study. J Pediatr 152:79–84. doi:10.1016/j.jpeds.2007.05.048, 84 e71-72

    Google Scholar 

  • Aaltonen J, Ojala T, Laitinen K, Poussa T, Ozanne S, Isolauri E (2011) Impact of maternal diet during pregnancy and breastfeeding on infant metabolic programming: a prospective randomized controlled study. Eur J Clin Nutr 65:10–19. doi:10.1038/ejcn.2010.225

    CAS  Google Scholar 

  • Abu-Asab MS et al (2011) Biomarkers in the age of omics: time for a systems biology approach. OMICS 15:105–112. doi:10.1089/omi.2010.0023

    CAS  Google Scholar 

  • Aguilera M, Rakotoarivonina H, Brutus A, Giardina T, Simon G, Fons M (2012) Aga1, the first alpha-Galactosidase from the human bacteria Ruminococcus gnavus E1, efficiently transcribed in gut conditions. Res Microbiol 163:14–21. doi:10.1016/j.resmic.2011.10.005

    CAS  Google Scholar 

  • Aires J, Anglade P, Baraige F, Zagorec M, Champomier-Verges MC, Butel MJ (2010) Proteomic comparison of the cytosolic proteins of three Bifidobacterium longum human isolates and B. longum NCC2705. BMC Microbiol 10:29

    Google Scholar 

  • AlFaleh K, Anabrees J (2014) Probiotics for prevention of necrotizing enterocolitis in preterm infants. The Cochrane database of systematic reviews 4:CD005496–CD005496. doi:10.1002/14651858.CD005496.pub4

    Google Scholar 

  • Avalos JL, Bever KM, Wolberger C (2005) Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17:855–868. doi:10.1016/j.molcel.2005.02.022

    CAS  Google Scholar 

  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920. doi:10.1126/science.1104816

    Google Scholar 

  • Baugher JL, Klaenhammer TR (2011) Invited review: application of omics tools to understanding probiotic functionality. J Dairy Sci 94:4753–4765. doi:10.3168/jds.2011-4384

    CAS  Google Scholar 

  • Bayoumi MA, Griffiths MW (2010) Probiotics down-regulate genes in Salmonella enterica serovar typhimurium pathogenicity islands 1 and 2. J Food Prot 73:452–460

    Google Scholar 

  • Benson AK et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938. doi:10.1073/pnas.1007028107

    CAS  Google Scholar 

  • Berlec A, Strukelj B (2009) Novel applications of recombinant lactic acid bacteria in therapy and in metabolic engineering. Recent Pat Biotechnol 3:77–87

    CAS  Google Scholar 

  • Bernini P et al (2009) Individual human phenotypes in metabolic space and time. J Proteome Res 8:4264–4271. doi:10.1021/pr900344m

    CAS  Google Scholar 

  • Boesten RJ, de Vos WM (2008) Interactomics in the human intestine: Lactobacilli and Bifidobacteria make a difference. J Clin Gastroenterol 42(Suppl 3 Pt 2):S163–S167. doi:10.1097/MCG.0b013e31817dbd62

    Google Scholar 

  • Booijink CC, Boekhorst J, Zoetendal EG, Smidt H, Kleerebezem M, de Vos WM (2010) Metatranscriptome analysis of the human fecal microbiota reveals subject-specific expression profiles, with genes encoding proteins involved in carbohydrate metabolism being dominantly expressed. Appl Environ Microbiol 76:5533–5540. doi:10.1128/AEM.00502-10

    CAS  Google Scholar 

  • Bottacini F et al (2010) Comparative genomics of the genus Bifidobacterium. Microbiology 156:3243–3254. doi:10.1099/mic.0.039545-0

    CAS  Google Scholar 

  • Briczinski EP, Loquasto JR, Barrangou R, Dudley EG, Roberts AM, Roberts RF (2009) Strain-specific genotyping of Bifidobacterium animalis subsp. lactis by using single-nucleotide polymorphisms, insertions, and deletions. Appl Environ Microbiol 75:7501–7508. doi:10.1128/AEM.01430-09

    CAS  Google Scholar 

  • Bron PA, Kleerebezem M (2011) Engineering lactic acid bacteria for increased industrial functionality. Bioeng Bugs 2:80–87. doi:10.4161/bbug.2.2.13910

    Google Scholar 

  • Budin-Verneuil A, Pichereau V, Auffray Y, Ehrlich D, Maguin E (2007) Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics 7:2038–2046. doi:10.1002/pmic.200600773

    CAS  Google Scholar 

  • Candela M, Guidotti M, Fabbri A, Brigidi P, Franceschi C, Fiorentini C (2011) Human intestinal microbiota: cross-talk with the host and its potential role in colorectal cancer. Crit Rev Microbiol 37:1–14. doi:10.3109/1040841X.2010.501760

    CAS  Google Scholar 

  • Cangemi de Gutierrez R, Santos VM, Nader-Macias ME (2004) Colonization capability of lactobacilli and pathogens in the respiratory tract of mice: microbiological, cytological, structural, and ultrastructural studies. Methods Mol Biol 268:373–385. doi:10.1385/1-59259-766-1:373

    Google Scholar 

  • Carrington LJ, Langley-Evans SC (2006) Wheezing and eczema in relation to infant anthropometry: evidence of developmental programming of disease in childhood. Maternal and Child Nutrition 2:51–61. doi:10.1111/j.1740-8709.2006.00036.x

    Google Scholar 

  • Catalioto RM, Maggi CA, Giuliani S (2011) Intestinal epithelial barrier dysfunction in disease and possible therapeutical interventions. Curr Med Chem 18:398–426

    CAS  Google Scholar 

  • Claesson MJ et al (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 108(Suppl 1):4586–4591. doi:10.1073/pnas.1000097107

    CAS  Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28:214–220. doi:10.1016/j.fm.2010.03.007

    Google Scholar 

  • Chrysohoou C, Stefanadis C (2013) Longevity and diet. Myth or pragmatism? Maturitas 76:303–307. doi:10.1016/j.maturitas.2013.09.014

    Google Scholar 

  • de Klerk E, den Dunnen J, 't Hoen PC (2014) RNA sequencing: from tag-based profiling to resolving complete transcript structure. Cellular and Molecular Life Sciences:1-15 doi:10.1007/s00018-014-1637-9

  • De Preter V, Ghebretinsae AH, Abrahantes JC, Windey K, Rutgeerts P, Verbeke K (2011a) Impact of the symbiotic combination of Lactobacillus casei shirota and oligofructose-enriched inulin on the fecal volatile metabolite profile in healthy subjects. Mol Nutr Food Res 55:714–722. doi:10.1002/mnfr.201000442

    Google Scholar 

  • De Preter V, Hamer HM, Windey K, Verbeke K (2011b) The impact of pre- and/or probiotics on human colonic metabolism: does it affect human health? Mol Nutr Food Res 55:46–57. doi:10.1002/mnfr.201000451

    Google Scholar 

  • de Vos WM, Hugenholtz J (2004) Engineering metabolic highways in Lactococci and other lactic acid bacteria. Trends Biotechnol 22:72–79. doi:10.1016/j.tibtech.2003.11.011

    Google Scholar 

  • Del Piano M et al (2006) Probiotics: from research to consumer. Dig Liver Dis 38(Suppl 2):S248–S255. doi:10.1016/S1590-8658(07)60004-8

    Google Scholar 

  • Del Piano M, Carmagnola S, Anderloni A, Andorno S, Ballarè M, Balzarini M, Montino F, Orsello M, Pagliarulo M, Sartori M, Tari R, Sforza F, Capurso L (2010) The use of probiotics in healthy volunteers with evacuation disorders and hard stools: a double-blind, randomized, placebo-controlled study. J Clin Gastroenterol 44(Suppl 1):S30–S34. doi:10.1097/MCG.0b013e3181ee31c3

  • Delia A, Morgante G, Rago G, Musacchio MC, Petraglia F, De Leo V (2006) Effectiveness of oral administration of Lactobacillus paracasei subsp. paracasei F19 in association with vaginal suppositories of Lactobacillus acidofilus in the treatment of vaginosis and in the prevention of recurrent vaginitis. Minerva Ginecol 58:227–231

    CAS  Google Scholar 

  • Deshpande G, Rao S, Patole S (2011) Progress in the field of probiotics: year 2011. Curr Opin Gastroenterol 27:13–18. doi:10.1097/MOG.0b013e328341373e

    Google Scholar 

  • Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811–818. doi:10.1038/nature06245

    CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Calasso M, Gobbetti M (2011) Proteomics of the bacterial cross-talk by quorum sensing. J Proteomics 74:19–34. doi:10.1016/j.jprot.2010.09.003

    Google Scholar 

  • Di Cagno R et al (2010) Quorum sensing in sourdough Lactobacillus plantarum DC400: induction of plantaricin A (PlnA) under co-cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Caco-2 cells. Proteomics 10:2175–2190. doi:10.1002/pmic.200900565

    Google Scholar 

  • Diaz-Torres ML et al (2006) Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. Fems Microbiology Letters 258:257–262. doi:10.1111/j.1574-6968.2006.00221.x

    CAS  Google Scholar 

  • Diaz Heijtz R et al (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108:3047–3052. doi:10.1073/pnas.1010529108

    Google Scholar 

  • Dimitrov DV (2011) The human gutome: nutrigenomics of the host-microbiome interactions. OMICS 15:419–430. doi:10.1089/omi.2010.0109

    CAS  Google Scholar 

  • Dumas ME, Kinross J, Nicholson JK (2014) Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 146:46–62. doi:10.1053/j.gastro.2013.11.001

    Google Scholar 

  • Dusko Ehrlich S, Meta HIT (2010) Metagenomics of the intestinal microbiota: potential applications. Gastroenterol Clin Biol 34(1):S23–S28. doi:10.1016/S0399-8320(10)70017-8

    Google Scholar 

  • Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638. doi:10.1126/science.1110591

    Google Scholar 

  • Eliasson M, Rannar S, Trygg J (2011) From data processing to multivariate validation—essential steps in extracting interpretable information from metabolomics data. Curr Pharm Biotechnol 12:996–1004

    CAS  Google Scholar 

  • Fakhry S, Manzo N, D'Apuzzo E, Pietrini L, Sorrentini I, Ricca E, De Felice M, Baccigalupi L (2009) Characterization of intestinal bacteria tightly bound to the human ileal epithelium. Res Microbiol 160(10):817–823. doi:10.1016/j.resmic.2009.09.009

  • Fenech M et al (2011) Nutrigenetics and nutrigenomics: viewpoints on the current status and applications in nutrition research and practice. J Nutrigenet Nutrigenomics 4:69–89. doi:10.1159/000327772

    CAS  Google Scholar 

  • Ferguson LR, Shelling AN, Lauren D, Heyes JA, McNabb WC, Nutrigenomics New Z (2007) Nutrigenomics and gut health. Mutat Res 622:1–6. doi:10.1016/j.mrfmmm.2007.05.001

    CAS  Google Scholar 

  • Fredslund F, Hachem MA, Larsen RJ, Sorensen PG, Coutinho PM, Lo Leggio L, Svensson B (2011) Crystal structure of alpha-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 412:466–480. doi:10.1016/j.jmb.2011.07.057

    CAS  Google Scholar 

  • Freitas M, Tavan E, Cayuela C, Diop L, Sapin C, Trugnan G (2003) Host-pathogens cross-talk. Indigenous bacteria and probiotics also play the game. Biol Cell 95:503–506

    Google Scholar 

  • Gerasimidis K et al (2014a) Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm Bowel Dis 20:861–871. doi:10.1097/mib.0000000000000023

    Google Scholar 

  • Gerasimidis K et al. (2014b) Reply to Sokol and Langella: Role of Faecalibacterium prausnitzii in Crohn's disease: friend, foe, or does not really matter? Inflammatory bowel diseases Publish Ahead of Print:10.1097/MIB.0000000000000079

  • German JB, Roberts MA, Watkins SM (2003) Personal metabolomics as a next generation nutritional assessment. J Nutr 133:4260–4266

    CAS  Google Scholar 

  • Ghishan FK, Kiela PR (2011) From probiotics to therapeutics: another step forward? J Clin Invest 121:2149–2152. doi:10.1172/JCI58025

    CAS  Google Scholar 

  • Gilad O, Svensson B, Viborg AH, Stuer-Lauridsen B, Jacobsen S (2011) The extracellular proteome of Bifidobacterium animalis subsp. lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 11:2503–2514. doi:10.1002/pmic.201000716

    CAS  Google Scholar 

  • Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. doi:10.1126/science.1124234

    CAS  Google Scholar 

  • Gloux K et al (2007) Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth. Appl Environ Microbiol 73:3734–3737. doi:10.1128/AEM.02204-06

    CAS  Google Scholar 

  • Golowczyc MA, Silva J, Abraham AG, De Antoni GL, Teixeira P (2010) Preservation of probiotic strains isolated from kefir by spray drying. Lett Appl Microbiol 50(1):7–12. doi:10.1111/j.1472-765X.2009.02759.x

  • Gomez-Llorente C et al (2013) Three main factors define changes in fecal microbiota associated with feeding modality in infants. J Pediatr Gastroenterol Nutr 57:461–466. doi:10.1097/MPG.0b013e31829d519a

    CAS  Google Scholar 

  • Gorg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685. doi:10.1002/pmic.200401031

    Google Scholar 

  • Grangette C et al (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A 102:10321–10326. doi:10.1073/pnas.0504084102

    CAS  Google Scholar 

  • Grindberg RV et al (2013) RNA-sequencing from single nuclei. Proc Natl Acad Sci U S A 110:19802–19807. doi:10.1073/pnas.1319700110

    CAS  Google Scholar 

  • Gueniche A et al (2010) Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp Dermatol 19:e1–e8. doi:10.1111/j.1600-0625.2009.00932.x

    Google Scholar 

  • Hisbergues M et al (2007) In vivo and in vitro immunomodulation of Der p 1 allergen-specific response by Lactobacillus plantarum bacteria. Clin Exp Allergy 37:1286–1295. doi:10.1111/j.1365-2222.2007.02792.x

    CAS  Google Scholar 

  • Hong YS et al (2011) Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J Clin Gastroenterol 45:415–425. doi:10.1097/MCG.0b013e318207f76c

    Google Scholar 

  • Huang CH, Lee FL (2011) The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group. Antonie Van Leeuwenhoek 99(2):319–327. doi:10.1007/s10482-010-9493-6

  • Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29:701–725. doi:10.1016/j.clnu.2010.05.004

    CAS  Google Scholar 

  • Iguchi A, Umekawa N, Maegawa T, Tsuruta H, Odamaki T, Xiao JZ, Osawa R (2011) Polymorphism and distribution of putative cell-surface adhesin-encoding ORFs among human fecal isolates of Bifidobacterium longum subsp. longum. Antonie Van Leeuwenhoek 99(3):457–471. doi:10.1007/s10482-010-9506-5

  • Izquierdo E, Medina M, Ennahar S, Marchioni E, Sanz Y (2008) Resistance to simulated gastrointestinal conditions and adhesion to mucus as probiotic criteria for Bifidobacterium longum strains. Curr Microbiol 56(6):613–618. doi:10.1007/s00284-008-9135-7

  • Jackson EL, Hamlin PJ, Ford AC (2011) VSL#3 and remission in active ulcerative colitis: larger studies required. Am J Gastroenterol 106:547, author reply 547-548

    Google Scholar 

  • Jimenez-Pranteda ML, Poncelet D, Nader-Macias ME, Arcos A, Aguilera M, Monteoliva-Sanchez M, Ramos-Cormenzana A (2012) Stability of lactobacilli encapsulated in various microbial polymers. J Biosci Bioeng 113:179–184. doi:10.1016/j.jbiosc.2011.10.010

    CAS  Google Scholar 

  • Kant R, Blom J, Palva A, Siezen RJ, de Vos WM (2011) Comparative genomics of Lactobacillus. Microb Biotechnol 4:323–332. doi:10.1111/j.1751-7915.2010.00215.x

    CAS  Google Scholar 

  • Kawase M, He F, Kubota A, Harata G, Hiramatsu M (2010) Oral administration of lactobacilli from human intestinal tract protects mice against influenza virus infection. Lett Appl Microbiol 51:6–10. doi:10.1111/j.1472-765X.2010.02849.x

    CAS  Google Scholar 

  • Kekkonen RA, Sysi-Aho M, Seppanen-Laakso T, Julkunen I, Vapaatalo H, Oresic M, Korpela R (2008) Effect of probiotic Lactobacillus rhamnosus GG intervention on global serum lipidomic profiles in healthy adults. World J Gastroenterol 14:3188–3194

    Google Scholar 

  • Klaassens ES, de Vos WM, Vaughan EE (2007) Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol 73:1388–1392. doi:10.1128/AEM.01921-06

    CAS  Google Scholar 

  • Klaenhammer TR et al (2008) Functional genomics of probiotic Lactobacilli. J Clin Gastroenterol 42(3 Pt 2):S160–S162. doi:10.1097/MCG.0b013e31817da140

    CAS  Google Scholar 

  • Klaenhammer TR, Barrangou R, Buck BL, Azcarate-Peril MA, Altermann E (2005) Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol Rev 29:393–409. doi:10.1016/j.femsre.2005.04.007

    CAS  Google Scholar 

  • Kleerebezem M et al (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995. doi:10.1073/pnas.0337704100

    CAS  Google Scholar 

  • Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230. doi:10.1111/j.1574-6976.2010.00208.x

    CAS  Google Scholar 

  • Koeth RA et al (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19:576–585. doi:10.1038/nm.3145

    CAS  Google Scholar 

  • Koyama T, Kirjavainen PV, Fisher C, Anukam K, Summers K, Hekmat S, Reid G (2010) Development and pilot evaluation of a novel probiotic mixture for the management of seasonal allergic rhinitis. Can J Microbiol 56(9):730–738. doi:10.1139/w10-061

  • Kurokawa K et al (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181. doi:10.1093/dnares/dsm018

    CAS  Google Scholar 

  • Kussmann M, Raymond F, Affolter M (2006) OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 124:758–787. doi:10.1016/j.jbiotec.2006.02.014

    CAS  Google Scholar 

  • Lamiki P et al (2010) Probiotics in diverticular disease of the colon: an open label study. J Gastrointestin Liver Dis 19:31–36

    Google Scholar 

  • Le Cao KA, Gonzalez I, Dejean S (2009) integrOmics: an R package to unravel relationships between two omics datasets. Bioinformatics 25:2855–2856. doi:10.1093/bioinformatics/btp515

    Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. doi:10.1128/MMBR.00017-08, Table of Contents

    CAS  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184. doi:10.1038/nrmicro2297

    CAS  Google Scholar 

  • LeBlanc JG, Sybesma W, Starrenburg M, Sesma F, de Vos WM, de Giori GS, Hugenholtz J (2010) Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26:835–841. doi:10.1016/j.nut.2009.06.023

    CAS  Google Scholar 

  • Lee JH, O'Sullivan DJ (2010) Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 74:378–416. doi:10.1128/MMBR.00004-10

    CAS  Google Scholar 

  • Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848. doi:10.1016/j.cell.2006.02.017

    CAS  Google Scholar 

  • Licciardi PV, Wong S-S, Tang MLK, Karagiannis TC (2010) Epigenome targeting by probiotic metabolites. Gut Pathogens 2 doi: 2410.1186/1757-4749-2-24

  • Lim EM, Ehrlich SD, Maguin E (2000) Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21:2557–2561. doi:10.1002/1522-2683(20000701)

    CAS  Google Scholar 

  • Luoto R, Laitinen K, Nermes M, Isolauri E (2010) Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br J Nutr 103:1792–1799. doi:10.1017/S0007114509993898

    CAS  Google Scholar 

  • Ly NP, Litonjua A, Gold DR, Celedon JC (2011) Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immunol 127:1087–1094. doi:10.1016/j.jaci.2011.02.015

    CAS  Google Scholar 

  • MacFabe DF (2012) Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum disorders. Microbial ecology in health and disease 23:19260 doi:10.3402/mehd.v23i0

  • Macho Fernandez E, Pot B, Grangette C (2011) Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2(5):280–286. doi:10.4161/gmic.2.5.18255

  • Macías-Rodríguez ME, Zagorec M, Ascencio F, Vázquez-Juárez R, Rojas M (2009) Lactobacillus fermentum BCS87 expresses mucus- and mucin-binding proteins on the cell surface. J Appl Microbiol 107(6):1866–1874. doi:10.1111/j.1365-2672.2009.04368.x

  • MacPhee RA, Hummelen R, Bisanz JE, Miller WL, Reid G (2010) Probiotic strategies for the treatment and prevention of bacterial vaginosis. Expert Opin Pharmacother 11:2985–2995. doi:10.1517/14656566.2010.512004

    Google Scholar 

  • Madsen K (2011) Using metabolomics to decipher probiotic effects in patients with irritable bowel syndrome. J Clin Gastroenterol 45(5):389–390. doi:10.1097/MCG.0b013e31821377cf

  • Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33. doi:10.1016/j.aca.2009.11.042

    CAS  Google Scholar 

  • Makarova K et al (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616. doi:10.1073/pnas.0607117103

    Google Scholar 

  • Mangian HF, Tappenden KA (2009) Butyrate increases GLUT2 mRNA abundance by initiating transcription in Caco2-BBe cells. JPEN J Parenter Enteral Nutr 33:607–617. doi:10.1177/0148607109336599, discussion 617

    CAS  Google Scholar 

  • Manichanh C et al (2006) Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205–211. doi:10.1136/gut.2005.073817

    CAS  Google Scholar 

  • Marco ML et al (2010) Convergence in probiotic Lactobacillus gut-adaptive responses in humans and mice. ISME J 4:1481–1484. doi:10.1038/ismej.2010.61

    CAS  Google Scholar 

  • Marchesi J, Shanahan F (2007) The normal intestinal microbiota. Curr Opin Infect Dis 20:508–513. doi:10.1097/QCO.0b013e3282a56a99

    Google Scholar 

  • Marques SCF, Oliveira CR, Pereira CMF, Outeiro TF (2011) Epigenetics in neurodegeneration: A new layer of complexity. Prog Neuropsychopharmacol Biol Psychiatry 35:348–355. doi:10.1016/j.pnpbp.2010.08.008

    CAS  Google Scholar 

  • Martin FP et al (2007) A top-down systems biology view of microbiome–mammalian metabolic interactions in a mouse model. Mol Syst Biol 3:112. doi:10.1038/msb4100153

    Google Scholar 

  • Martin FP, Sprenger N, Montoliu I, Rezzi S, Kochhar S, Nicholson JK (2010) Dietary modulation of gut functional ecology studied by fecal metabonomics. J Proteome Res 9:5284–5295. doi:10.1021/pr100554m

    CAS  Google Scholar 

  • Martins FS et al (2010) Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS One 5:8925. doi:10.1371/journal.pone.0008925

    Google Scholar 

  • Matsuyama A et al (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol 24:841–847. doi:10.1038/nbt1222

    CAS  Google Scholar 

  • Mayer EA (2011) Gut feelings: the emerging biology of gut–brain communication. Nat Rev Neurosci 12:453–466. doi:10.1038/nrn3071

    CAS  Google Scholar 

  • McCartney AL (2002) Application of molecular biological methods for studying probiotics and the gut flora. Br J Nutr 88(1):S29–S37. doi:10.1079/BJN2002627

    CAS  Google Scholar 

  • Miquel S et al (2014) Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii. Gut Microbes 5:146–151

    Google Scholar 

  • Monteoliva-Sánchez M, Aguilera M, Jiménez-Pranteda ML, Ramos-Cormenzana A (2010) Probióticos en las distintas etapas de la vida. In: Ramos-Cormenzana A, Nader-Macías F, Monteoliva-Sánchez M (eds) Probióticos y salud. Díaz de Santos, Madrid

    Google Scholar 

  • Morelli L, Capurso L (2012) FAO/WHO Guidelines on probiotics 10 years later. FOREWORD. J Clin Gastroenterol 46:S1–S2

    Google Scholar 

  • Morowitz MJ, Denef VJ, Costello EK, Thomas BC, Poroyko V, Relman DA, Banfield JF (2011) Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci U S A 108:1128–1133. doi:10.1073/pnas.1010992108

    CAS  Google Scholar 

  • Mortimer SA, Kidwell MA, Doudna JA (2014) Insights into RNA structure and function from genome-wide studies. Nat Rev Genet advance online publication

  • Muegge BD et al (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332:970–974. doi:10.1126/science.1198719

    CAS  Google Scholar 

  • Nakanishi Y, Fukuda S, Chikayama E, Kimura Y, Ohno H, Kikuchi J (2011) Dynamic omics approach identifies nutrition-mediated microbial interactions. J Proteome Res 10:824–836. doi:10.1021/pr100989c

    CAS  Google Scholar 

  • Nanno M, Kato I, Kobayashi T, Shida K (2011) Biological effects of probiotics: what impact does Lactobacillus casei shirota have on us? Int J Immunopathol Pharmacol 24:45S–50S

    CAS  Google Scholar 

  • Nielsen VR MK, Paerregaard A (2002) Lactic bacteria and other probiotics in infections and inflammatory diseases in children. What do we believe?—What do we know? Ugeskr Laeger 2(164):5769–5772

    Google Scholar 

  • Nieuwenhuizen NE, Lopata AL (2005) Fighting food allergy: current approaches. Ann N Y Acad Sci 1056:30–45. doi:10.1196/annals.1352.003

    CAS  Google Scholar 

  • O'Connell Motherway M et al (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 108:11217–11222. doi:10.1073/pnas.1105380108

    Google Scholar 

  • O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. doi:10.1038/sj.embor.7400731

    Google Scholar 

  • O'Hara AM, Shanahan F (2007) Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol 5:274–284. doi:10.1016/j.cgh.2006.12.009

    Google Scholar 

  • O'Sullivan O et al (2009) Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiol 9:50. doi:10.1186/1471-2180-9-50

    Google Scholar 

  • Ohara T, Yoshino K, Kitajima M (2010) Possibility of preventing colorectal carcinogenesis with probiotics. Hepatogastroenterology 57:1411–1415

    Google Scholar 

  • Ohigashi S, Hoshino Y, Ohde S, Onodera H (2011) Functional outcome, quality of life, and efficacy of probiotics in postoperative patients with colorectal cancer. Surg Today 41:1200–1206. doi:10.1007/s00595-010-4450-6

    Google Scholar 

  • Ozdemir V, Suarez-Kurtz G, Stenne R, Somogyi AA, Someya T, Kayaalp SO, Kolker E (2009) Risk assessment and communication tools for genotype associations with multifactorial phenotypes: the concept of "edge effect" and cultivating an ethical bridge between omics innovations and society. OMICS 13:43–61. doi:10.1089/omi.2009.0011

    CAS  Google Scholar 

  • Panduru M, Panduru NM, Sălăvăstru CM, Tiplica GS (2014) Probiotics and primary prevention of atopic dermatitis: a meta-analysis of randomized controlled studies. J Eur Acad Dermatol Venereol. doi:10.1111/jdv.12496

    Google Scholar 

  • Ponnusamy K, Choi JN, Kim J, Lee SY, Lee CH (2011) Microbial community and metabolomic comparison of irritable bowel syndrome faeces. J Med Microbiol 60:817–827. doi:10.1099/jmm.0.028126-0

    CAS  Google Scholar 

  • Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136. doi:10.1111/j.1462-2920.2007.01369

    Google Scholar 

  • Ramos-Cormenzana A, Fuentes S, Ferrer-Cebrian R, Monteoliva-Sánchez M (2005) Probiotics and biotherapy. Recent Research Developments in Microbiology 9:97–127

    Google Scholar 

  • Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9:27–38. doi:10.1038/nrmicro2473

    CAS  Google Scholar 

  • Rescigno M (2008) The pathogenic role of intestinal flora in IBD and colon cancer. Curr Drug Targets 9:395–403

    CAS  Google Scholar 

  • Ruiz L, Gueimonde M, Couté Y, Salminen S, Sanchez JC, de los Reyes-Gavilán CG, Margolles A (2011) Evaluation of the ability of Bifidobacterium longum to metabolize human intestinal mucus. FEMS Microbiol Lett 314(2):125–130. doi:10.1111/j.1574-6968.2010.02159.x

  • Saleh M, Trinchieri G (2011) Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11:9–20. doi:10.1038/nri2891

    CAS  Google Scholar 

  • Sato T et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–1772. doi:10.1053/j.gastro.2011.07.050

    CAS  Google Scholar 

  • Saulnier DM et al (2011) Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 6:e18783. doi:10.1371/journal.pone.0018783

    CAS  Google Scholar 

  • Savage M (2001) Complications with reformulated one-alpha vitamin D. BMJ 322:799

    CAS  Google Scholar 

  • Savijoki K, Lietzén N, Kankainen M, Alatossava T, Koskenniemi K, Varmanen P, Nyman TA (2011) Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705. J Proteome Res 10(8):3460–3473. doi:10.1021/pr2000896

  • Saxelin M et al (2010) Persistence of probiotic strains in the gastrointestinal tract when administered as capsules, yoghurt, or cheese. Int J Food Microbiol 144:293–300. doi:10.1016/j.ijfoodmicro.2010.10.009

    CAS  Google Scholar 

  • Schell MA et al (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427. doi:10.1073/pnas.212527599

    CAS  Google Scholar 

  • Secher T, Gaillot O, Ryffel B, Chamaillard M (2010) Remote control of intestinal tumorigenesis by innate immunity. Cancer Res 70:1749–1752. doi:10.1158/0008-5472.CAN-09-3401

    CAS  Google Scholar 

  • Seksik P et al (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52:237–242

    CAS  Google Scholar 

  • Shanahan F (2005) Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases I. Pathophysiological basis and prospects for probiotic therapy in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 288:G417–G421. doi:10.1152/ajpgi.00421.2004

    CAS  Google Scholar 

  • Shen S, Qu Y, Zhang J (2014) The application of next generation sequencing on epigenetic study. Yi chuan =. Hereditas / Zhongguo yi chuan xue hui bian ji 36:256–275

    CAS  Google Scholar 

  • Shenderov BA (2012) Gut indigenous microbiota and epigenetics. Microbial ecology in health and disease 23 doi:10.3402/mehd.v23i0.17195

  • Shima T et al (2008) Differential effects of two probiotic strains with different bacteriological properties on intestinal gene expression, with special reference to indigenous bacteria. FEMS Immunol Med Microbiol 52:69–77. doi:10.1111/j.1574-695X.2007.00344.x

    CAS  Google Scholar 

  • Skoog EC, Lindberg M, Lindén SK (2011) Strain-dependent proliferation in response to human gastric mucin and adhesion properties of Helicobacter pylori are not affected by co-isolated Lactobacillus sp. Helicobacter 16(1):9–19. doi:10.1111/j.1523-5378.2010.00810.x

  • Sokol H, Langella P (2014) Beneficial effects of exclusive enteral nutrition in Crohn's disease are not mediated by Faecalibacterium prausnitzii. Inflammatory bowel diseases Publish Ahead of Print:10.1097/MIB.0000000000000071

  • Sonnenburg JL, Chen CT, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4:e413. doi:10.1371/journal.pbio.0040413

    Google Scholar 

  • Spear GT, Gilbert D, Landay AL, Zariffard R, French AL, Patel P, Gillevet PM (2011) Pyrosequencing of the genital microbiotas of HIV-seropositive and -seronegative women reveals Lactobacillus iners as the predominant Lactobacillus species. Appl Environ Microbiol 77:378–381. doi:10.1128/AEM.00973-10

    CAS  Google Scholar 

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290. doi:10.1038/nrmicro2540

    CAS  Google Scholar 

  • Stanghellini V et al (2010) Gut microbiota and related diseases: clinical features. Intern Emerg Med 5(Suppl 1):S57–S63. doi:10.1007/s11739-010-0451-0

    Google Scholar 

  • Stecher B et al (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6:e1000711. doi:10.1371/journal.ppat.1000711

    Google Scholar 

  • Stewart JA, Chadwick VS, Murray A (2005) Investigations into the influence of host genetics on the predominant eubacteria in the faecal microflora of children. J Med Microbiol 54:1239–1242. doi:10.1099/jmm.0.46189-0

    CAS  Google Scholar 

  • Stover PJ, Caudill MA (2008) Genetic and epigenetic contributions to human nutrition and health: managing genome–diet interactions. J Am Diet Assoc 108:1480–1487. doi:10.1016/j.jada.2008.06.430

    Google Scholar 

  • Tannock GW (1999) Analysis of the intestinal microflora: a renaissance. Antonie Van Leeuwenhoek 76:265–278

    CAS  Google Scholar 

  • Thierry AC, Bernasconi E, Mercenier A, Corthésy B (2009) Conditioned polarized Caco-2 cell monolayers allow to discriminate for the ability of gut-derived microorganisms to modulate permeability and antigen-induced basophil degranulation. Clin Exp Allergy 39(4):527–536. doi:10.1111/j.1365-2222.2008.03185.x

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi:10.1038/nature05414

    Google Scholar 

  • Turnbaugh PJ et al (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107:7503–7508. doi:10.1073/pnas.1002355107

    CAS  Google Scholar 

  • Van Huynegem K, Loos M, Steidler L (2009) Immunomodulation by genetically engineered lactic acid bacteria. Front Biosci (Landmark Ed) 14:4825–4835

    Google Scholar 

  • Vaughan EE, de Vries MC, Zoetendal EG, Ben-Amor K, Akkermans AD, de Vos WM (2002) The intestinal LABs. Antonie Van Leeuwenhoek 82:341–352

    CAS  Google Scholar 

  • Veltman K, Hummel S, Cichon C, Sonnenborn U, Schmidt MA (2012) Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. International Journal of Biochemistry & Cell Biology 44:341–349. doi:10.1016/j.biocel.2011.11.006

    CAS  Google Scholar 

  • Ventura M, van Sinderen D, Fitzgerald GF, Zink R (2004) Insights into the taxonomy, genetics and physiology of bifidobacteria. Antonie Van Leeuwenhoek 86:205–223. doi:10.1023/B:ANTO.0000047930.11029.ec

    CAS  Google Scholar 

  • Verna EC, Lucak S (2010) Use of probiotics in gastrointestinal disorders: what to recommend? Therap Adv Gastroenterol 3:307–319. doi:10.1177/1756283X10373814

    Google Scholar 

  • Vitali B, Wasinger V, Brigidi P, Guilhaus M (2005) A proteomic view of Bifidobacterium infantis generated by multi-dimensional chromatography coupled with tandem mass spectrometry. Proteomics 5:1859–1867. doi:10.1002/pmic.200401080

    CAS  Google Scholar 

  • Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M (2010) The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia 53:606–613. doi:10.1007/s00125-010-1662-7

    CAS  Google Scholar 

  • Waddington L, Cyr T, Hefford M, Hansen LT, Kalmokoff M (2010) Understanding the acid tolerance response of bifidobacteria. J Appl Microbiol 108:1408–1420. doi:10.1111/j.1365-2672.2009.04540.x

    CAS  Google Scholar 

  • Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247. doi:10.1038/85686

    CAS  Google Scholar 

  • Worthley DL et al (2009) A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer. Am J Clin Nutr 90:578–586. doi:10.3945/ajcn.2009.28106

    CAS  Google Scholar 

  • Xiong P, Zhou J-l, Xiao L-y, Kong X-l, Li J-y, Jia X-m, Li W (2008) Initial study on the discrimination of oral microorganisms with a metabonomics method. Hua xi kou qiang yi xue za zhi = Huaxi kouqiang yixue zazhi = West China journal of stomatology 26:537-540

  • Zeisel SH et al (2005) The nutritional phenotype in the age of metabolomics. J Nutr 135:1613–1616

    CAS  Google Scholar 

  • Zhang C et al (2010) Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 4:232–241. doi:10.1038/ismej.2009.112

    CAS  Google Scholar 

  • Zhou M, Theunissen D, Wels M, Siezen RJ (2010) LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11:651. doi:10.1186/1471-2164-11-651

    Google Scholar 

  • Zhu B, Wang X, Li L (2010) Human gut microbiome: the second genome of human body. Protein Cell 1:718–725. doi:10.1007/s13238-010-0093-z

    Google Scholar 

  • Zhu Y, Michelle Luo T, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309:119–127. doi:10.1016/j.canlet.2011.06.004

    CAS  Google Scholar 

  • Zoetendal EG, Ben-Amor K, Akkermans AD, Abee T, de Vos WM (2001) DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Syst Appl Microbiol 24:405–410. doi:10.1078/0723-2020-00060

    CAS  Google Scholar 

  • Zoetendal EG, Cheng B, Koike S, Mackie RI (2004) Molecular microbial ecology of the gastrointestinal tract: from phylogeny to function. Curr Issues Intest Microbiol 5:31–47

    CAS  Google Scholar 

  • Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Mol Microbiol 59:1639–1650. doi:10.1111/j.1365-2958.2006.05056.x

    CAS  Google Scholar 

Download references

Acknowledgments

The funding that supports this research field has been a Project GREIB under CEI-BIOTIC, University of Granada.

Conflict of Interest

All authors belong to the University of Granada, which partially has founding the research that supports the review manuscript. However, they declare that they have no conflict of interest. Maria Lujan Jiménez-Pranteda declares that she has no conflict of interest. Azahara Pérez-Davó declares that she has no conflict of interest. Mercedes Monteoliva-Sánchez declares that she has no conflict of interest. Alberto Ramos Cormenzana declares that he has no conflict of interest. Margarita Aguilera Gómez declares that she has no conflict of interest. Maria Lujan Jiménez-Pranteda has received research grants from Science Ministry in Spain. Azahara Pérez-Davó has received research grants from University of Granada. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Aguilera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Pranteda, M.L., Pérez-Davó, A., Monteoliva-Sánchez, M. et al. Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. Food Anal. Methods 8, 272–289 (2015). https://doi.org/10.1007/s12161-014-9923-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9923-6

Keywords

Navigation