Skip to main content
Log in

A Measurement Method on Pesticide Residues of Apple Surface Based on Laser-Induced Breakdown Spectroscopy

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Pesticide residues on fruit surfaces do great harm, but it is difficult to realize the fast and on-site measurement of pesticide residues. In this paper, we explored the potential application of laser-induced breakdown spectroscopy (LIBS) technology for the fast measurement of chlorpyrifos residues on apple surfaces. The spectral characteristics of phosphorus (213.62 and 214.91 nm), sulfur (393.33 and 396.89 nm), and chlorine (837.594 nm) in chlorpyrifos could be captured by LIBS. Significant spectra differences were found between untreated apples and apples sprayed with chlorpyrifos. The results of chemometrics methods indicate that the spectra of clean apples and the apples sprayed with several different concentrations of chlorpyrifos have obvious differences. The study demonstrates that laser-induced breakdown spectroscopy, which has advantages in micro-destructive, fast, and on-site test, not only can detect chlorpyrifos on fruit surfaces but also allows the semi-quantitative detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amal K, Elnaby SH, Palleschi V et al (2006) Comparison between single- and double-pulse LIBS at different air pressures on silicon target. Appl Phys B 83:651–657. doi:10.1007/s00340-006-2259-1

    Article  CAS  Google Scholar 

  • Asimellis G, Hamilton S, Giannoudakos A et al (2005) Controlled inert gas environment for enhanced chlorine and fluorine detection in the visible and near-infrared by laser-induced breakdown spectroscopy. Spectrochim Acta, Part B 60:1132–1139. doi:10.1016/j.sab.2005.05.035

    Article  Google Scholar 

  • Burakov VS, Tarasenko NV, Nedelko MI et al (2009) Analysis of lead and sulfur in environmental samples by double pulse laser induced breakdown spectroscopy. Spectrochim Acta, Part B 64:141–146. doi:10.1016/j.sab.2008.11.005

    Article  Google Scholar 

  • De Giacomo A, Dell’Aglio M, De Pascale O (2004) Single pulse-laser induced breakdown spectroscopy in aqueous solution. Appl Phys A 79:1035–1038. doi:10.1007/s00339-004-2622-1

    Article  Google Scholar 

  • Diaz Pace DM, DAngelo CA, Bertuccelli D et al (2006) Analysis of heavy metals in liquids using laser induced breakdown spectroscopy by liquid-to-solid matrix conversion. Spectrochim Acta, Part B 61:929–933. doi:10.1016/j.sab.2006.07.003

    Article  Google Scholar 

  • Dyar MD, Tucker JM, Humphries S et al (2011) Strategies for Mars remote laser-induced breakdown spectroscopy analysis of sulfur in geological samples. Spectrochim Acta, Part B 66:39–56. doi:10.1016/j.sab.2010.11.016

    Article  Google Scholar 

  • Eto S, Tani J, Shirai K et al (2013) Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy. Spectrochim Acta B: At Spectrosc 87:1. doi:10.1016/j.sab.2013.05.005

    Article  Google Scholar 

  • Ferrer C, Gomez MJ, Garcia-Reyes JF et al (2005) Determination of pesticide residues in olives and olive oil by matrix solid-phase dispersion followed by gas chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. J Chromatogr A 1069:183–194. doi:10.1016/j.chroma.2005.02.015

    Article  CAS  Google Scholar 

  • Galiova M, Kaiser J, Novotny K et al (2011) Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum I. leaves. Microsc Res Tech 74:845–852. doi:10.1002/jemt. 20967

    CAS  Google Scholar 

  • Gao XH (2000) Rapid detection of pesticide residues on vegetables is imperative. Pestic Sci Adm 21:16–20

    Google Scholar 

  • Gehlen CD, Wiens E, Noll R et al (2009) Chlorine detection in cement with laser-induced breakdown spectroscopy in the infrared and ultraviolet spectral range. Spectrochim Acta, Part B 64:1135–1140. doi:10.1016/j.sab.2009.07.021

    Article  Google Scholar 

  • Gomez-Ramos MM, Ferrer C, Malato O et al (2013) Liquid chromatography high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables. Screening and quantitative studies. J Chromatogr A 1287:24–37. doi:10.1016/j.chroma.2013.02.065

    Article  CAS  Google Scholar 

  • Gondal MA, Dastageer A, Maslehuddin M et al (2011) Sensitivity enhancement at 594.8 nm atomic transition of Cl I for chloride detection in the reinforced concrete using LIBS. J Environ Sci Health Part A 46:198–203. doi:10.1080/10934529.2011.532440

    Article  CAS  Google Scholar 

  • Gruber J, Heitz J, Strasser H et al (2001) Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy. Spectrochim Acta, Part B 56:685–693. doi:10.1016/S0584-8547(01)00182-3

    Article  Google Scholar 

  • Kim G, Kwak J, Choi J et al (2012) Detection of nutrient elements and contamination by pesticides in spinach and rice samples using laser-induced breakdown spectroscopy (LIBS). J Agric Food Chem 60:718–724. doi:10.1021/jf203518f

    Article  CAS  Google Scholar 

  • Kondo H, Hamada N, Wagatsuma K (2009) Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry. Spectrochim Acta, Part B 64:884–890. doi:10.1016/j.sab.2009.07.014

    Article  Google Scholar 

  • Kramida A, Ralchenko Yu, Reader J, NIST ASD Team (2012) NIST Atomic Spectra Database (ver.5.0). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/asd. Accessed 9 August 2012

  • Kwak J, Lenth C, Salb C et al (2009) Quantitative analysis of arsenic in mine tailing soils using double pulse-laser induced breakdown spectroscopy. Spectrochim Acta, Part B 64:1105–1110. doi:10.1016/j.sab.2009.07.008

    Article  Google Scholar 

  • Lee D, Lee S, Seong GH et al (2006) Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl Spectrosc 60:373–377. doi:10.1366/000370206776593762

    Article  Google Scholar 

  • Li J, L X, Liu M et al (2010) Recognition of different pesticide contamination in navel oranges based on spectra technology. Acta Agric Univ Jiangxiensis 32:0723–0728

    CAS  Google Scholar 

  • Lu C, Wang L, Hu H et al (2013) Analysis of total nitrogen and total phosphorus in soil using laser-induced breakdown spectroscopy. Chin Op Lett 11:053004. doi:10.3788/COL201311.053004

    Article  Google Scholar 

  • Mehl PM, Chen YR, Kim MS et al (2004) Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. J Food Eng 61:67–81. doi:10.1016/s0260-8774(03)00188-2

    Article  Google Scholar 

  • Multari RA, Cremers DA, Dupre JAM et al (2013a) Detection of biological contaminants on foods and food surfaces using laser-induced breakdown spectroscopy (LIBS). J Agric Food Chem 61:8687–8694. doi:10.1021/jf4029317

    Article  CAS  Google Scholar 

  • Multari RA, Cremers DA, Scott T et al (2013b) Detection of pesticides and dioxins in tissue fats and rendering oils using laser-induced breakdown spectroscopy (LIBS). J Agric Food Chem 61:2348–2357. doi:10.1021/jf304589s

    Article  CAS  Google Scholar 

  • Noll R, Bette H, Brysch A et al (2001) Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry. Spectrochim Acta, Part B 56:637–649. doi:10.1016/S0584-8547(01)00214-2

    Article  Google Scholar 

  • Pettersson JE (1983) The spectrum of singly ionized sulphur, S II. Phys Scr 28:421. doi:10.1088/0031-8949/28/3/019

    Article  CAS  Google Scholar 

  • Radziemski LJ (2002) From LASER to LIBS, the path of technology development. Spectrochim Acta, Part B 57:1109–1113. doi:10.1016/S0584-8547(02)00052-6

    Article  Google Scholar 

  • Salle B, Cremers DA, Maurice S et al (2005) Laser-induced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples. Spectrochim Acta, Part B 60:479–490. doi:10.1016/j.sab.2005.02.009

    Article  Google Scholar 

  • Salle B, Lacour JL, Mauchien P et al (2006) Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere. Spectrochim Acta, Part B 61:301–313. doi:10.1016/j.sab.2006.02.003

    Article  Google Scholar 

  • Sharma SK, Misra AK, Lucey PG et al (2007) Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Spectrochim Acta, Part A 68:1036–1045. doi:10.1016/j.saa.2007.06.046

    Article  CAS  Google Scholar 

  • St-Onge L, Kwong E, Sabsabi M et al (2004) Rapid analysis of liquid formulations containing sodium chloride using laser-induced breakdown spectroscopy. J Pharm Biomed Anal 36:277–284. doi:10.1016/j.jpba.2004.06.004

    Article  CAS  Google Scholar 

  • Yu J, Baudelet M, Boueri M et al. Laser-induced plasma for detecting trace elements in biological materials. Newsroom doi: 10.1117/2.1200812.1367

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31271614).

Conflict of Interest

Daming Dong declares that he has no conflict of interest. Feiyu Ma declares that she has no conflict of interest. Daming Dong and Feiyu Ma have received research grants from the National Natural Science Foundation of China and National Engineering Research Center for Information Technology in Agriculture. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daming Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, F., Dong, D. A Measurement Method on Pesticide Residues of Apple Surface Based on Laser-Induced Breakdown Spectroscopy. Food Anal. Methods 7, 1858–1865 (2014). https://doi.org/10.1007/s12161-014-9828-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9828-4

Keywords

Navigation