Skip to main content
Log in

Application of Box–Behnken Design in the Optimization of In Situ Surfactant-Based Solid Phase Extraction Method for Spectrophotometric Determination of Quinoline Yellow in Food and Water Samples

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this work, a simple, rapid and sensitive method using in situ surfactant-based solid phase extraction (ISS-SPE) combined with UV–vis spectrophotometry has been developed for the preconcentration and determination of trace amounts of quinoline yellow in food and water samples. The Box–Behnken design was employed to optimize the extraction efficiency. The variables of interest were pH, surfactant volume, extraction time and NaI volume. In the optimal conditions, the calibration graph was linear in the range of 10.0–750 μg L−1 with a correlation coefficient of 0.9982. The limit of detection (LOD) was 2.1 μg L−1, and the preconcentration factor was calculated to be 51.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berzas Nevado JJ, Rodríguez Flores J, Villaseñor Llerena MJ (1994) Simultaneous determination of quinoline yellow and sunset yellow by derivative spectrophotometry and ratio spectra derivative. Anal Lett 27(5):1009–1029

    CAS  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveira EP (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5):965–977

    Article  CAS  Google Scholar 

  • Capitán-Vallvey LF, Fernández MD, de Orbe I (1997) Simultaneous determination of the colourants sunset yellow FCF and quinoline yellow by solid-phase spectrophotometry using partial least squares multivariate calibration. Analyst 122(4):351–354

    Article  Google Scholar 

  • Capitán-Vallvey LF, Navas Iglesias N, De Orbe PI, Avidad Castañeda R (1996) Simultaneous determination of quinoline yellow and brilliant blue FCF in cosmetics by solid-phase spectrophotometry. Talanta 43(9):1457–1463

    Article  Google Scholar 

  • Capitán-Vallvey LF, de Orbe I, López-Rodríguez S, Avidad R (1995) Determination of unsulphonated quinoline yellow in soft drinks by solid-phase spectrophotometry. Microchim Acta 117(3–4):129–135

    Article  Google Scholar 

  • Capitán-Vallvey LF, Valencia MC, Nicolas EA (2000) Flow injection analysis with in-line solid phase extraction for the spectrophotometric determination of sulfonated and unsulfonated Quinoline Yellow in Cologne. Fresenius J Anal Chem 367(7):672–676

    Article  Google Scholar 

  • El-Shahawi MS, Bashammakh AS, Orief MI (2013) Separation and determination of cadmium in water by foam column prior to inductively coupled plasma optical emission spectrometry. J Ind Eng Chem. doi:10.1016/j.jiec.2013.03.033

    Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS (2007a) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597(2):179–186

    Article  CAS  Google Scholar 

  • Ferreira SLC, Bruns RE, da Silva EGP, dos Santos WNL, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim ICSF, Neto BB (2007b) Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A 1158(1):2–14

    Article  CAS  Google Scholar 

  • Florian M, Yamanaka H, Carneiro PA, Zanoni MVB (2002) Determination of brilliant blue FCF in the presence and absence of erythrosine and quinoline yellow food colours by cathodic stripping voltammetry. Food Addit Contam 19(9):803–809

    Article  CAS  Google Scholar 

  • Garcı́a-Falcón MS, Simal-Gándara J (2005) Determination of food dyes in soft drinks containing natural pigments by liquid chromatography with minimal clean-up. Food Control 16(3):293–297

    Article  CAS  Google Scholar 

  • Khanavi M, Hajimahmoodi M, Ranjbar AM (2011) Development of a green chromatographic method for simultaneous determination of food colorants. Food Anal Methods 5(3):408–415

    Article  Google Scholar 

  • Kumar A, Prasad B, Mishra IM (2008) Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box–Behnken design. J Hazard Mater 150(1):174–182

    Article  CAS  Google Scholar 

  • Macioszek VK, Kononowicz AK (2004) The evaluation of the genotoxicity of two commonly used food colours: quinoline yellow (E 104) and brilliant black BN (E 151). Cell Mol Biol Lett 9(1):107–122

    CAS  Google Scholar 

  • Nevado JJB, Flores JR, LLerena MJV (1997) Square wave adsorptive voltammetric determination of sunset yellow. Talanta 44(3):467–474

    Article  CAS  Google Scholar 

  • Nevado JJB, Flores JR, Llerena MJV, Fariñas NR (1999) Rapid spectrophotometric method to resolve ternary mixtures of Tartrazine, Quinoline Yellow and Patent Blue V in commercial products. Fresenius J Anal Chem 365(4):383–388

    Article  Google Scholar 

  • Oka H, Harada K-I, Suzuki M (2003) Purification of quinoline yellow components using high-speed counter-current chromatography by stepwise increasing the flow-rate of the mobile phase. J Chromatogr A 989(2):249–255

    Article  CAS  Google Scholar 

  • Pourreza N, Ghomi M (2011) Simultaneous cloud point extraction and spectrophotometric determination of carmoisine and brilliant blue FCF in food samples. Talanta 84(1):240–243

    Article  CAS  Google Scholar 

  • Pourreza N, Rastegarzadeh S, Larki A (2011) Determination of Allura red in food samples after cloud point extraction using mixed micelles. Food Chem 126(3):1465–1469

    Article  CAS  Google Scholar 

  • Razmara RS, Daneshfar A, Sahrai R (2011) Determination of methylene blue and sunset yellow in wastewater and food samples using salting-out assisted liquid–liquid extraction. J Ind Eng Chem 17(3):533–536

    Article  CAS  Google Scholar 

  • Rouhani S, Haji-ghasemi T (2009) Novel PVC-based coated graphite electrode for selective determination of quinoline yellow. J Iran Chem Soc 6(4):679–685

    Article  CAS  Google Scholar 

  • Shahabadi N, Maghsudi M, Rouhani S (2012) Study on the interaction of food colourant quinoline yellow with bovine serum albumin by spectroscopic techniques. Food Chem 135(3):1836–1841

    Article  CAS  Google Scholar 

  • Souza AS, dos Santos WNL, Ferreira SLC (2005) Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochim Acta Part B 60(5):737–742

    Article  CAS  Google Scholar 

  • Tavakoli M, Shemirani F, Hajimahmoodi M (2013) Magnetic mixed hemimicelles solid-phase extraction of three food colorants from real samples. Food Anal Methods 6(4):1–9

    Google Scholar 

  • Yan H, Gao M, Qiao J (2012) New ionic liquid modified polymeric microspheres for solid-phase extraction of four Sudan dyes in foodstuff samples. J Agric Food Chem 60(27):6907–6912

    Article  CAS  Google Scholar 

  • Yasini P, Shemirani F, Khani R (2012) Combination of in situ surfactant-based solid phase extraction and central composite design for preconcentration and determination of manganese in food and water samples. Food Anal Methods 5(6):1303–1310

    Article  Google Scholar 

  • Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171(1–3):551–562

    Article  CAS  Google Scholar 

  • Yousefi SR, Shemirani F (2011) Novel method for in-situ surfactant-based solid-phase extraction: application to the determination of Co(II) and Ni(II) in aqueous samples. Microchim Acta 173(3–4):415–421

    Article  CAS  Google Scholar 

  • Zarei AR, Mardi K, Dehghani H (2012) A miniaturized preconcentration method based on dispersive liquid–liquid microextraction for the spectrophotometric determination of aziridine in food simulants. Food Anal Methods 5(6):1398–1403

    Article  Google Scholar 

  • Zhao J, Zhang Y, Wu K et al (2011) Electrochemical sensor for hazardous food colourant quinoline yellow based on carbon nanotube-modified electrode. Food Chem 128(2):569–572

    Article  CAS  Google Scholar 

  • Zou T, He P, Yasen A, Li Z (2013) Determination of seven synthetic dyes in animal feeds and meat by high performance liquid chromatography with diode array and tandem mass detectors. Food Chem 138(2–3):1742–1748

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Vahid Hamedpour declares that he has no conflict of interest.

Mohammad Amjadi declares that he has no conflict of interest.

This article does not contain any studies with human or animals subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Hamedpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamedpour, V., Amjadi, M. Application of Box–Behnken Design in the Optimization of In Situ Surfactant-Based Solid Phase Extraction Method for Spectrophotometric Determination of Quinoline Yellow in Food and Water Samples. Food Anal. Methods 7, 1123–1129 (2014). https://doi.org/10.1007/s12161-013-9724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-013-9724-3

Keywords

Navigation