Skip to main content

Advertisement

Log in

Assessment of Copper Bioavailability in Spinach (Spinacia oleracea L) Leaves by Chemical Fractionation

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

An analytical fractionation scheme has been developed based on water, acetone, chloroform, diethyl ether, ethanol, n-hexane, or methanol extractions to identify free and/or copper bound complexes in spinach samples, sample extracts being analyzed by inductively coupled plasma-mass spectrometry. The total copper contents were determined after digestion of the samples in a microwave-assisted digestion system. Method validation parameters were defined in terms of the detection limits, accuracy, and precision. The limits of detection and quantification for copper were 0.07 and 0.23 mg kg−1, respectively. The precision in terms of the repeatability and reproducibility, calculated from the relative standard deviations (%RSD), were 3.0 and 4.8 %, respectively. Solvent systems, which simulated gastric and intestinal or gastrointestinal digestion together with n-octanol extraction and activated carbon adsorption, were evaluated with respect to both sample-solvent compatibility and bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbasi S, Khani H, Tabaraki R (2010) Food Chem 123:507

    Article  CAS  Google Scholar 

  • Akoh C, Min DB (2002) Food lipids. Chemistry, nutrition, and biotechnology, 2nd edn. Marcel Dekker, New York, 1005 p

    Book  Google Scholar 

  • Amais RS, Donati GL, Nóbrega JA (2011) Anal Chim Acta 706:223

    Article  CAS  Google Scholar 

  • AOAC 985.29 (1986) Total dietary fiber in foods, enzymatic-gravimetric method. AOAC International, Gaithersburg

  • Araujo GS, Matos LJBL, Fernandes JO, Cartaxo SJM, Gonçalves LRB, Fernandes FAN, Farias WRL (2013) Ultrason Sonochem 20:95

    Article  CAS  Google Scholar 

  • Bergman M, Varshavsky L, Gottlieb HE, Grossman S (2001) Phytochemistry 58:143

    Article  CAS  Google Scholar 

  • Bonfils F, Ehabe EE, Aymard C, Vaysse L, Sainte-Beuve J (2007) Phytochem Anal 18:103

    Article  CAS  Google Scholar 

  • Bosscher D, Van Caillie-Bertrand M, Robberecht H, Van Dyck K, Van Cauwenbergh R, Deelstra H (2001) J Pediatr Gastroenterol Nutr 32:54

    Article  CAS  Google Scholar 

  • Caldwell CR (2002) J Plant Nutr 25(6):1225

    Article  CAS  Google Scholar 

  • Chrastný V, Komárek M (2009) Chem Pap 63:512

    Article  CAS  Google Scholar 

  • Ciceri E, Recchia S, Dossi C, Yang L, Sturgeon RE (2008) Talanta 74:642

    Article  CAS  Google Scholar 

  • Corley J (2003) Handbook of residue analytical methods for agrochemicals. Wiley, Chichester

    Google Scholar 

  • de Romana DL, Olivares M, Uauy R, Araya M (2011) J Trace Elem Med Biol 25:3

    Article  CAS  Google Scholar 

  • Domínguez-González R, Romarís-Hortas V, García-Sartal C, Moreda-Pineiro A, Barciela-Alonso MC, Bermejo-Barrera P (2010) Talanta 82:1668

    Article  CAS  Google Scholar 

  • DS/EN 14084: (2003) Foodstuffs—determination of trace elements: determination of lead, cadmium, zinc, copper and iron by atomic absorption spectrometry (AAS) after microwave digestion. BSI Group, London

  • Durukan İ, Şahin ÇA, Şatıroğlu N, Bektaş S (2011) Microchem J 99:159

    Article  CAS  Google Scholar 

  • Egan H, Kirk R, Sawyer R (1981) Pearson's chemical analysis of foods. Longman Scientific and Technical, Harlow, 591 p

    Google Scholar 

  • Eller FJ, King JW (1996) Semin Food Anal 1:145

    CAS  Google Scholar 

  • Emek SC, Åkerlund HE, Clausén M, Ohlsson L, Weström B, Erlanson-Albertsson C, Albertsson PA (2011) Food Hydrocoll 25:1618

    Article  CAS  Google Scholar 

  • Ferraz TPL, Fiu′za MC, dos Santos MLA, de Carvalho LP, Soares NM (2004) J Biochem Biophys Methods 58:187

    Article  CAS  Google Scholar 

  • Fu H, Xie B, Ma S, Zhu X, Fan G, Pan S (2011) J Food Compos Anal 24:288

    Article  CAS  Google Scholar 

  • Gómez-Ariza JL, Arias-Borrego A, García-Barrera T (2006) J Chromatogr A 1121:1191

    Article  CAS  Google Scholar 

  • Hokura A, Oguri S, Matsuura H, Haraguchi H (2000) Bunseki Kagaku 49:387

    Article  CAS  Google Scholar 

  • ISO 1871:1975. Agricultural food products - General directions for the determination of nitrogen by the Kjeldahl method. ISO, Geneva

  • ISO 5498:1981. Agricultural food products—determination of crude fibre content. ISO, Geneva

  • ISO 5984:2002 Animal feeding stuffs—determination of crude ash. ISO, Geneva

  • ISO 771:1977. Oilseed residues—determination of moisture and volatile matter content. ISO, Geneva

  • Karadjova I, Izgi B, Gucer S (2002) Spectrochim Acta Part B 57:581

    Article  Google Scholar 

  • Khanam UKS, Oba S, Yanase E, Murakami Y (2012) J Funct Foods 4:979

    Article  CAS  Google Scholar 

  • Kowalewska Z, Izgi B, Saracoglu S, Gucer S (2005) Chem Anal (Warsaw) 50:1007

    Google Scholar 

  • Lisiewska Z, Kmiecik W, Gebczynski P, Sobczynska L (2011) Food Chem 126:460

    Article  CAS  Google Scholar 

  • Liu CS, Glahn RP, Liu RH (2004) J Agric Food Chem 52:4330

    Article  CAS  Google Scholar 

  • Maeda N, Hada T, Murakami-Nakai C, Kuriyama I, Ichikawa H, Fukumori Y, Hiratsuka J, Yoshida H, Sakaguchi K, Yoshiyuki Mizushina Y (2005) J Nutr Biochem 16:121

    Article  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, San Diego, 674 p

    Google Scholar 

  • Nardi EP, Evangelista FS, Tormen L, Saint′Pierre TD, Curtius AJ, de Souza SS, Barbosa F Jr (2009) Food Chem 112:727

    Article  CAS  Google Scholar 

  • Prasad MNV (2004) Heavy metal stress in plants: from biomolecules to ecosystems. Springer, Berlin, 462 p

    Book  Google Scholar 

  • Rouser G, Kritchevsky G, Simon G, Nelson GJ (1967) Lipids 2:37

    Article  CAS  Google Scholar 

  • Shun-xing L, Feng-ying Z, Xian-li L, Wen-lian C (2005) Phytochem Anal 16:405

    Article  CAS  Google Scholar 

  • Tapiero H, Townsend DM, Tew KD (2003) Biomed Pharmacother 57:386

    Article  CAS  Google Scholar 

  • TS 765: (1969) Oilseed residues—determination of diethyl ether extract. BSI Group, London

  • Xiang G, Zhang Y, Jiang X, He L, Fan L, Zhao W (2010) J Hazard Mater 179:521

    Article  CAS  Google Scholar 

  • Yasar SB, Gucer S (2004) Anal Chim Acta 505:43

    Article  CAS  Google Scholar 

  • Zheljazkov VD, Warman PR (2004) Environ Pollut 131:187

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commission of Scientific Research Projects of Uludag University (project no. F-2008/25), and it is part of the PhD thesis of the first author accepted on 10.07.2013 by the Graduate School of Natural and Applied Sciences of Uludag University.

Conflict of Interest

Umran Seven Erdemir declares that she has no conflict of interest. Seref Gucer declares that he has no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seref Gucer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdemir, U.S., Gucer, S. Assessment of Copper Bioavailability in Spinach (Spinacia oleracea L) Leaves by Chemical Fractionation. Food Anal. Methods 7, 994–1001 (2014). https://doi.org/10.1007/s12161-013-9704-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-013-9704-7

Keywords

Navigation