Skip to main content

Evaluation of SPE as Preparative Technique for the Analysis of Phenolic Metabolites in Human Feces

Abstract

Solid phase extraction (SPE) methodology has been evaluated as a cleanup strategy prior to the analysis of phenolic metabolites in fecal samples by UPLC–DAD–ESI–TQ MS. Among the sorbents tested, Oasis® HLB led to the higher phenolic standard recoveries. Sample acidification (0.4 M HCl, final concentration) before SPE considerably improved standard recoveries. Values of the process efficiency (CSPE/CWithout SPE) for a standard solution containing gallic acid, protocatechuic acid, caffeic acid, benzoic acid, 3-phenylpropionic acid, (+)-catechin, (−)-epicatechin, procyanidin B2, and 4-hydroxybenzoic 2,3,5,6 d4 acid were acceptable (>90 %) for all compounds, except for procyanidin B2 (26 %). The developed SPE methodology was applied to fecal samples of individuals subjected to a wine intervention study. Phenolic metabolites, including intermediate metabolites (phenyl-γ-valerolactones and phenylvaleric acid derivatives) and end products (simple phenols, hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, and hydroxybenzoic acids) were identified. Most of the compounds (n = 14) exhibited values of process efficiency between 85 and 115 %. Although some compounds (n = 4) showed process efficiency>115 %, there was a group of metabolites (4-O-methylgallic acid, syringic acid, and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)-valeric acid) whose process efficiency was <85 %, which represented a serious limitation and made us to discard SPE as a preparative technique for the analysis of these phenolic metabolites. Finally, the paper reports the concentrations of phenolic metabolites in a randomized set of human fecal samples from healthy volunteers (n = 15) without any previous SPE application. Large inter-individual variability was observed, which was attributed to differences in human gut microbiota composition.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Appeldoorn MM, Vincken JP, Aura AM, Hollman PCH, Gruppen H (2009) J Agric Food Chem 57:1084–1092

    Article  CAS  Google Scholar 

  • Baranowska I, Magiera S, Baranowski J (2011) J Chromatogr Sci 49:764–773

    Article  CAS  Google Scholar 

  • Chambers E, Wagrowski-Diehl DM, Lu Z, Mazzeo JR (2007) J Chromatogr B 852:22–34

    Article  CAS  Google Scholar 

  • Gonthier MP, Remesy C, Scalbert A, Cheynier V, Souquet JM, Poutanen K, Aura AM (2006) Biomed Pharmacother 60:536–540

    Article  CAS  Google Scholar 

  • Grün CH, van Dorsten FA, Jacobs DM, Le Belleguic M, van Velzen EJJ, Bingham MO, Janssen HG, van Duynhoven JPM (2008) J Chromatogr B 871:212–219

    Article  Google Scholar 

  • Hollman PCH, Cassidy A, Comte B, Heinonen M, Richelle M, Richling E, Serafini M, Scalbert A, Sies H, Vidry S (2011) J Nutr 141:989S–1009S

    Article  CAS  Google Scholar 

  • Jenner AM, Rafter J, Halliwell B (2005) Free Radic Biol Med 38:763–772

    Article  CAS  Google Scholar 

  • Jiménez-Girón A, Queipo-Ortuño MI, Boto-Ordóñez M, Muñoz-González I, Sánchez-Patán F, Monagas M, Martín-Álvarez PJ, Murri M, Tinahones FJ, Andrés-Lacueva C, Bartolomé B, Moreno-Arribas MV (2013) J Agric Food Chem 61:3909–3915

    Article  Google Scholar 

  • Kole PL, Venkatesh G, Kotecha J, Sheshala R (2011) Biomed Chromatogr 25(1):199–217

    Article  CAS  Google Scholar 

  • Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  • Monagas M, Urpi-Sarda M, Sánchez-Patán F, Llorach R, Garrido I, Gómez-Cordovés C, Andrés-Lacueva C, Bartolomé B (2010) Food Func 1:233–253

    Google Scholar 

  • Muñoz-González C, Moreno-Arribas MV, Rodríguez-Bencomo JJ, Cueva C, Martín Álvarez PJ, Bartolomé B, Pozo-Bayón MA (2012) Food Chem 133:526–535

    Article  Google Scholar 

  • Nagy K, Redeuil K, Bertholet R, Steiling H, Kussmann M (2009) Anal Chem 81:6347–6356

    Article  CAS  Google Scholar 

  • Novakova L, Spacil Z, Seifrtova M, Opletal L, Solich P (2010) Talanta 80:1970–1979

    Article  CAS  Google Scholar 

  • Pasinetti GM (2012) Planta Med 78:1614–1619

    Article  CAS  Google Scholar 

  • Pérez-Magariño S, Ortega-Heras M, Cano-Mozo E (2008) J Agric Food Chem 56:11560–11570

    Article  Google Scholar 

  • Sánchez-Patán F, Monagas M, Moreno-Arribas MV, Bartolomé B (2011) J Agric Food Chem 59:2241–2247

    Article  Google Scholar 

  • Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson GR, Martín-Álvarez PJ, Moreno-Arribas MV, Bartolomé B (2012) Food Chem 131:337–347

    Article  Google Scholar 

  • Scalbert A, Manach C, Morand C, Remesy C, Jiménez L (2005) Crit Rev Food Sci Nutr 45:287–306

    Article  CAS  Google Scholar 

  • Selma MV, Espin JC, Tomas –Barberan FA (2009) J Agric Food Chem 57:6485–6501

    Article  CAS  Google Scholar 

  • Serra A, Macia A, Romero MP, Salvado MJ, Bustos M, Fernandez-Larrea J, Motilva MJ (2009) J Chromatogr B 877:1169–1176

    Article  CAS  Google Scholar 

  • Silva CL (2011) Talanta 86:82–90

    Article  CAS  Google Scholar 

  • Stalmach A, Edwards CA, Wightman JD, Crozier A (2013) Food Func 4:52–62

    Google Scholar 

  • Tarascou I, Souquet JM, Mazauric JP, Carrillo S, Coq S, Canon F, Fulcrand H, Cheynier V (2010) Arch Biochem Biophys 501:16–22

    Article  CAS  Google Scholar 

  • Tomás-Barberán FA, Andrés-Lacueva C (2012) J Agric Food Chem 60:8773–8775

    Article  Google Scholar 

  • Touriño S, Pérez-Jimenez J, Mateos-Martín ML, Fuguet E, Vinardell MP, Cascante M, Torres JL (2011) J Agric Food Chem 59:5955–5963

    Article  Google Scholar 

  • Tulipani S, Llorach R, Urpi-Sarda M, Andrés-Lacueva C (2013) Anal Chem 85:341–348

    Article  CAS  Google Scholar 

  • Urpi-Sarda M, Monagas M, Khan N, Lamuela-Raventós RM, Santos-Buelga C, Sacanella E, Castell M, Permanyer J, Andrés-Lacueva C (2009) Anal Bioanal Chem 394:1545–1556

    Article  CAS  Google Scholar 

  • Williamson G, Clifford MN (2010) Br J Nutr 104:S48–S66

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Dr. Rosa del Campo and her group in the Ramón y Cajal Hospital (Madrid, Spain) for providing the feces samples and to Waters (Milford, MA, USA) and Agilent Technologies (Waldbronn, Germany) for providing the cartridges. IMG acknowledges MINECO for her FPI pre-doctorate grant, and FSP and AJG thank CSIC for their respective research contracts. This work has been funded by the Spanish Ministry of Economy and Competitiveness (AGL2009-13361-C02-01, AGL2010-17499, and Consolider Ingenio 2010 FUN-C-FOOD Projects).

Conflicts of Interest

Irene Muñoz-González declares that she has no conflict of interest. Fernando Sánchez-Patán declares that he has no conflict of interest. Ana Jiménez-Girón declares that she has no conflict of interest. Carolina Cueva declares that she has no conflict of interest. María Monagas declares that she has no conflict of interest. Pedro J. Martín-Álvarez declares that he has no conflict of interest. M. Victoria Moreno-Arribas declares that she has no conflict of interest. Begoña Bartolomé declares that she has no conflict of interest.

Compliance with Ethics Requirements

All procedures followed were in accordance with the ethical standards of the Ethics Committee of Clinical Investigation of the CSIC (Spain). Informed consent was obtained from all patients who are included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Bartolomé.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muñoz-González, I., Sánchez-Patán, F., Jiménez-Girón, A. et al. Evaluation of SPE as Preparative Technique for the Analysis of Phenolic Metabolites in Human Feces. Food Anal. Methods 7, 844–853 (2014). https://doi.org/10.1007/s12161-013-9690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-013-9690-9

Keywords