Skip to main content
Log in

Automating a 96-Well Microtiter Plate Assay for Quick Analysis of Chemically Available Lysine in Foods

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A new method for quick analysis of available lysine content in different food products has been developed by automating a 96-well microtiter plate assay. Although manual fluorometric methods validated in order to determinate available lysine content already existed for this compound, the benefits of applying appropriate automation should provide continuous operation, increased precision, an affordable electronic audit trail, and significantly reduced time and reagent consumption. The objective of this work was to adapt the ortho-phthaldialdehyde (OPA) fluorometric method to an automated workstation. Considerable effort went into developing and validating an automated method. The analytical parameters of linearity (r = 0.999), the precision of the method (relative standard deviations = 2.8–3.0 % for the different samples), and the results of the comparison with the corresponding OPA manual fluorometric method show that the studied method is useful for the measurement of available lysine in several food products from different natural origins such as liquid foods (soy, oat, quinoa beverages, and ultra-high temperature/sterilized milk) and powdered samples (powdered adapted, powdered follow-up, and junior milk infant formulas) with reduced time and reagent consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albalá-Hurtado S, Bover-Cid S, Izquierdo-Pulido M, Veciana-Nogués MT, Vidal-Carou M (1997) J Chromatogr A 778:235–241

    Article  Google Scholar 

  • Amigo-Benavent M, Silván JM, Moreno FJ, Villamiel M, Del Castillo MD (2008) J Agric Food Chem 56:6498–6505

    Article  CAS  Google Scholar 

  • Carpenter KJ (1960) Biochem J 77:604–610

    CAS  Google Scholar 

  • Eigel WN, Butler JE, Ernstrom CA, Farrel HM, Harwalkar VR, Jenness R (1984) Whitney R McL. J Dairy Sci 67:1599–1631

    Article  CAS  Google Scholar 

  • Erbersdobler H, Hupe A (1991) Z Ernährungswiss 30:46–49

    Article  CAS  Google Scholar 

  • Fernández-Artigas P, Garcia-Villanova B, Guerra-Hernández E (1999) J Sci Food Agric 79:851–854

    Article  Google Scholar 

  • Ferrer E, Alegría A, Farré R, Abellán P, Romero F (1999) Food Sci Technol Int 5:447–461

    Article  CAS  Google Scholar 

  • Ferrer E, Alegría A, Farré R, Abellán P, Romero F (2003) Food/Nahrung 47:403–407

    Article  CAS  Google Scholar 

  • Friedman M, Brandon DL (2001) J Agric Food Chem 49:1069–1086

    Article  CAS  Google Scholar 

  • Goodno CC, Swaisgood HE, Catignani GL (1981) Anal Biochem 115:203–211

    Article  CAS  Google Scholar 

  • Institute of Medicine (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). The National Academies Press, Washington

  • Kakade ML, Liener IE (1969) Anal Biochem 27:273–280

    Article  CAS  Google Scholar 

  • Kwok KC, Shiu YW, Yeung CH, Niranjan K (1998) J Sci Food Agric 77:473–478

    Article  CAS  Google Scholar 

  • McEwen JW, McKenna RJ, O’Kane KA, Phillips RR, Johns PW (2010) Food Chem 119:323–327

    Article  CAS  Google Scholar 

  • Malec LS, Pereyra-Gonzales AS, Naranjo GB, Vigo MS (2002) Food Res Int 35:849–853

    Article  CAS  Google Scholar 

  • Meade SJ, Reid EA, Gerrard JA (2005) J AOAC Int 88:904–922

    CAS  Google Scholar 

  • Modler HW (1985) J Dairy Sci 68:2195–2205

    Article  CAS  Google Scholar 

  • Morales FJ, Romero C, Jiménez-Pérez S (1995) J Food Protect 58:310–315

    CAS  Google Scholar 

  • Pereyra-Gonzáles AS, Naranjo GB, Malec LS, Vigo MS (2003) Int Dairy J 13:95–99

    Article  Google Scholar 

  • Smith DM (2010) Protein separation and characterization procedures. In: Nielsen SS (ed) Food analysis. Part III: chemical properties and characteristics of foods. Springer, New York, pp 271–278

    Google Scholar 

  • Souci SW, Fachmann W, Kraut H (2000) Food composition and nutrition tables. Medpharm, London

    Google Scholar 

  • Swaisgood HE, Ctagnani GL (1985) J Dairy Sci 68:2782–2790

    Article  CAS  Google Scholar 

  • Tomarelli RM, Yuhas RJ, Fisher A, Weaber JR (1985) J Agric Food Chem 33:316–318

    Article  CAS  Google Scholar 

  • Van Mil PJJM, Jans JA (1991) Neth Milk Dairy J 45:145–167

    Google Scholar 

  • Vigo MS, Malec LS, Gomez RG, Llosa RA (1992) Food Chem 44:363–365

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2000) Energy and protein requirements. Geneva: World Health Organization Technical Report Series 724

Download references

Acknowledgments

This research project was supported by the Spanish Ministry of Science and Technology and European Regional Development Funds (AGL2010-22206-C02-01). Barba, F.J received a contract employment from this project to carry out the study. Carbonell-Capella, J.M. holds an award from the Spanish Ministry of Education (AP2010-2546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Frígola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barba, F.J., Carbonell-Capella, J.M., Esteve, M.J. et al. Automating a 96-Well Microtiter Plate Assay for Quick Analysis of Chemically Available Lysine in Foods. Food Anal. Methods 6, 1258–1264 (2013). https://doi.org/10.1007/s12161-012-9535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-012-9535-y

Keywords

Navigation