Development of an Analytical Method for the Combined Determination of Water-Soluble Vitamins and Minerals Through High-Performance Liquid Chromatography–Inductively Coupled Plasma Atomic Emission Spectrometry Hyphenation

Abstract

The capabilities of inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of water-soluble vitamins after high-performance liquid chromatography (HPLC) separation have been evaluated for the first time in the present work. Thanks to the multielemental capability of ICP-AES, it has been possible to develop a method for the joint determination of several water-soluble vitamins and minerals. The vitamin chromatograms were obtained by plotting the carbon corrected emission intensity against time. Meanwhile, minerals were determined through the measurement of the emission intensity at their characteristic wavelengths. The established method was applied to the determination of thiamine, riboflavin, pantothenic acid, nicotinamide, ascorbic acid, Cr, Mo, Se, Mn, Zn, Fe, Mg, Ca, and K in multivitamin complexes. Good linearities were obtained, with correlation coefficients above 0.999 for all the vitamins and metals. The detection limits using ICP-AES for vitamins were lower than 10 mg L−1 except for biotin (18 mg L−1) and ascorbic acid (35 mg L−1). Moreover, the limits of detection for metals ranged from 0.3 mg L−1 for K and 0.02 mg L−1 for Mo. Even though the ICP is less sensitive than PDA and MS for vitamin determination, the HPLC-ICP-AES allows determination of vitamins and minerals in a period of time not much higher than that required for the simple determination of the minerals, and it is less sensitive to interferences in trace quantities.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Almagro I, San Andres MP, Vera S (2002) Chromatographia 55:185

    Article  CAS  Google Scholar 

  2. CEM Corporation (2006) MARS user’s manual. CEM Corporation, Matthews

    Google Scholar 

  3. Chatzimichalakis PF, Samanidou VF, Verpoorte R, Papadoyanis IN (2004) J Sep Sci 27:1181

    Article  CAS  Google Scholar 

  4. Chen Z, Chen B, Yao S (2006) Anal Chim Acta 569:169

    Article  CAS  Google Scholar 

  5. Garden ML, Marshall J, Littlejohn D (1991) J Anal At Spectrom 6:159

    Article  CAS  Google Scholar 

  6. Goulden PD, Anthony DHJ (1984) Anal Chem 56:2327

    Article  CAS  Google Scholar 

  7. Grotti M, Frache R (2003) J Anal At Spectrom 18:1192

    Article  CAS  Google Scholar 

  8. Grotti M, Paredes E, Maestre S, Todolí JL (2008) Spectrochim Acta Part B63:571

    Google Scholar 

  9. Heudi O, Kilinc T, Fontannaz P (2005) J Chromatogr A 1070:49

    Article  CAS  Google Scholar 

  10. Höller U, Brodhag C, Knöbel A, Hofmann P, Spitzer V (2003) J Pharm Biomed Anal 31:151

    Article  Google Scholar 

  11. Jinno K, Nakanishi S, Nagoshi T (1984) Anal Chem 56:1977

    Article  CAS  Google Scholar 

  12. Jinno K, Nakanishi S, Fujimoto C (1985) Anal Chem 57:2229

    Article  CAS  Google Scholar 

  13. Klejdus B, Petrlová J, Potesil D, Adam V, Mikelová R, Vacek J, Kizek R, Kubán V (2004) Anal Chim Acta 520:57

    Article  CAS  Google Scholar 

  14. Krampitz PD, Barnes KW (1998) At Spectrosc 19:43

    CAS  Google Scholar 

  15. Li K (2002) Biomed Chromatogr 16:504

    Article  CAS  Google Scholar 

  16. Li HB, Chen F (2001) Chromatographia 54:270

    Article  CAS  Google Scholar 

  17. Luo X, Chen B, Ding L, Tang F, Yao S (2006) Anal Chim Acta 562:185

    Article  CAS  Google Scholar 

  18. Markopoulou CK, Kagkadis KA, Koundourellis JE (2002) J Pharm Biomed Anal 30:1403

    Article  CAS  Google Scholar 

  19. Marszall ML, Lebiedzinska A, Czarnowski W, Szefer P (2005) J Chromatogr A 1094:91

    Article  CAS  Google Scholar 

  20. Monferrer-Pons L, Capella-Peiró ME, Gil-Agustí M, Esteve-Romero J (2003) J Chromatogr A 984:223

    Article  CAS  Google Scholar 

  21. Morita M, Uehiro T, Fuwa K (1980) Anal Chem 52:349

    Article  CAS  Google Scholar 

  22. Paredes E, Maestre SE, Prats S, Todolí JL (2006) Anal Chem 78:6774

    Article  CAS  Google Scholar 

  23. Paredes E, Maestre SE, Prats MS, Todoli JL (2008) J Chromatogr A 1185:178

    Article  CAS  Google Scholar 

  24. Peters HL, Jones BT (2003) Appl Spectrosc Rev 38:71

    Article  CAS  Google Scholar 

  25. Peters HL, Levine KE, Jones BT (2001) Anal Chem 73:453

    Article  CAS  Google Scholar 

  26. Peters HL, Hou X, Jones BT (2003) Appl Spectrosc 57:1162

    Article  CAS  Google Scholar 

  27. Peters HL, Davis AC, Jones BT (2004) Microchem J 76:85

    Article  CAS  Google Scholar 

  28. Spacil Z, Folbrova J, Megoulas N, Solich P, Koupparis M (2007) Anal Chim Acta 583:239

    Article  CAS  Google Scholar 

  29. Wongyai SJ (2000) J Chromatogr A 870:217

    Article  CAS  Google Scholar 

  30. Yoshida K, Hasegawa T, Haraguchi H (1983) Anal Chem 55:2106

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank to the Spanish Education Ministry (Projects PETRI95-0980-OP and CTQ2009-14063) and to the Vicerrectorado de Investigación of the University of Alicante for the financial support. E.P. also thank the Generalitat Valenciana for the FPI grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. S. Prats.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paredes, E., Prats, M.S., Maestre, S.E. et al. Development of an Analytical Method for the Combined Determination of Water-Soluble Vitamins and Minerals Through High-Performance Liquid Chromatography–Inductively Coupled Plasma Atomic Emission Spectrometry Hyphenation. Food Anal. Methods 5, 897–908 (2012). https://doi.org/10.1007/s12161-011-9327-9

Download citation

Keywords

  • Water-soluble vitamins
  • Minerals
  • Dietary supplements
  • Inductively coupled plasma atomic spectrometry
  • High-performance liquid chromatography