Food Analytical Methods

, Volume 4, Issue 3, pp 326–333 | Cite as

Quantification of 2-Acetyl-1-pyrroline and Other Rice Aroma Volatiles Among Indian Scented Rice Cultivars by HS-SPME/GC-FID

  • Sarika V. Mathure
  • Kantilal V. Wakte
  • Narendra Jawali
  • Altafhusain B. NadafEmail author


A method for quantitative determination of 2-Acetyl-1-pyrroline (2AP) and other aroma volatiles using HS-solid phase micro extraction (SPME)/GC-FID in scented rice has been developed. Extraction at 80 °C for 30 min pre-incubation followed by 20-min adsorption from 1 g rice containing 300 μl of odour-free water were the optimum conditions for quantification. Calibration curves of aroma volatiles were obtained by standard addition approach. The optimised conditions were employed for quantitative analysis in 33 scented and two non-scented rice samples. Highest amount of 2AP was recorded in Indrayani Brand 2 (0.552 ppm), followed by Kamod (0.418 ppm) and Basmati Brand 5 (0.411 ppm). Rice types (Basmati, Ambemohar, Kolam, Indrayani and local) significantly contributed to the variation in 2AP, hexanal, nonanal, decanal, benzyl alcohol, vanillin, guaiacol and indole. The method developed suffices the need of rapid and reliable method for quantification of 2AP and other aroma-related volatiles from aromatic rice cultivars.


Solid phase micro-extraction SPME Rice Aroma volatiles Vanillin 



The authors are thankful to Dr. P. Srinivas (Central Food and Technology Research Institute, Mysore, India) for the generous gift of authentic 2AP. The work has been carried out under University of Pune–Bhabha Atomic Research Centre collaborative research programme.


  1. Bergman C, Delgado J, Bryant R, Grimm C, Cadwallder K, Webb BA (2000) Cereal Chem 77(4):454–458CrossRefGoogle Scholar
  2. Bradbury LMT, Henry RJ, Jin Q, Waters DLE (2005) Mol Breed 16:279–283CrossRefGoogle Scholar
  3. Bradbury LMT, Henry RJ, Waters DLE (2008) Flavor development in rice. In: Frankel DH, Belanger F (eds) Biotechnology in flavor production. Blackwell Publishing Ltd., Oxon, pp 130–146CrossRefGoogle Scholar
  4. Buttery RG, Ling LC, Juliano BO, Turnbaugh JG (1983) J Agric Food Chem 31:823–826CrossRefGoogle Scholar
  5. Buttery RG, Ling LC, Mon TR (1986) J Agric Food Chem 34:112–114CrossRefGoogle Scholar
  6. Buttery R, Turnbaugh J, Ling L (1988) J Agric Food Chem 36:1006–1009CrossRefGoogle Scholar
  7. Champagne ET (2008) Cereal Chem 85(4):445–454CrossRefGoogle Scholar
  8. Eisert R, Pawliszyn J (1997) Crit Rev Anal Chem 27(2):103–135CrossRefGoogle Scholar
  9. Grimm CC, Bergman C, Delgado JT, Bryant R (2001) J Agric Food Chem 49:245–249CrossRefGoogle Scholar
  10. Itani T, Tamaki M, Hayata Y, Fushimi T, Hashizume K (2004) Plant Prod Sci 7:178–183CrossRefGoogle Scholar
  11. Jezussek M, Juliano B, Schieberle P (2002) J Agric Food Chem 50:1101–1105CrossRefGoogle Scholar
  12. Laguerre M, Mestres C, Davrieux F, Ringuet J, Boulanger R (2007) J Agric Food Chem 55:1077–1083CrossRefGoogle Scholar
  13. Lin C, Hsih T, Hoff B (1990) J Food Sci 55:1466–1467CrossRefGoogle Scholar
  14. Mahatheeranont S, Keawsa-ard S, Dumri K (2001) J Agric Food Chem 49:773–779CrossRefGoogle Scholar
  15. Maraval I, Mestres C, Pernin K, Ribeyre F, Boulanger R, Guichard E, Gunata Z (2008) J Agric Food Chem 56(13):5291–5298CrossRefGoogle Scholar
  16. Maraval I, Sen K, Agrebi A, Menut C, Morere A, Boulanger R, Gay F, Mestres C, Gunata Z (2010) Anal Chim Acta. doi: 10.1016/j.aca.2010.07.024 Google Scholar
  17. Nadaf AB, Krishnan S, Wakte KV (2006) Curr Sci 91(11):1533–1536Google Scholar
  18. Petrov M, Danzart M, Giampaoli P, Faure J, Richard H (1996) Sci Aliments 16:347–360Google Scholar
  19. Pico Y, Fernandez M, Ruiz MJ, Font G (2007) J Biochem Biophys Methods 70:117–131CrossRefGoogle Scholar
  20. Soria AC, Sanz J, Martinez-Castro I (2009) Eur Food Res Technol 228:579–590CrossRefGoogle Scholar
  21. Sriseadka T, Wongpornchai S, Kitsawatpaiboon P (2006) J Agric Food Chem 54:8183–8189CrossRefGoogle Scholar
  22. Stashenko EE, Martínez JR (2007) J Biochem Biophys Methods 70:235–242CrossRefGoogle Scholar
  23. Tanchotikul U, Hsieh TC (1991) J Agric Food Chem 39:944–947CrossRefGoogle Scholar
  24. Tava A, Bocchi S (1999) Cereal Chem 76:526–529CrossRefGoogle Scholar
  25. Theodoridis G, Koster EHM, Jong GJ (2000) J Chromatogr B Biomed Sci Appl 745:49–82CrossRefGoogle Scholar
  26. Vas G, Vekey K (2004) J Mass Spectrom 39:233–254CrossRefGoogle Scholar
  27. Wakte KV, Nadaf AB, Thengane RJ, Jawali N (2010) Food Chem 121(2):595–600CrossRefGoogle Scholar
  28. Wercinski S (1999) Solid phase microextraction: a practical guide. CRC, Boca RatonCrossRefGoogle Scholar
  29. Widjaja RW, Craske JD, Wootton M (1996) J Sci Food Agric 70:151–161CrossRefGoogle Scholar
  30. Wongpornchai S, Sriseadka T, Choonvisase S (2003) J Agric Food Chem 51:457–462CrossRefGoogle Scholar
  31. Wongpornchai S, Dumri K, Jongkaewwattana S, Siri B (2004) Food Chem 87:407–414CrossRefGoogle Scholar
  32. Yang DS, Robert LS, Kyu-Seong L, Stanley JK (2008a) J Agric Food Chem 56(8):2780–2787CrossRefGoogle Scholar
  33. Yang DS, Kyu-Seong L, O-Young J, Kee-Jong K, Stanley JK (2008b) J Agric Food Chem 56(1):235–240CrossRefGoogle Scholar
  34. Yoshihashi T (2002) J Food Sci 67(2):619–622CrossRefGoogle Scholar
  35. Zeng Z, Zhang H, Zhang T, Tamogami S, Chen JY (2009) J Food Compos Anal 22(4):347–353CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Sarika V. Mathure
    • 1
  • Kantilal V. Wakte
    • 1
  • Narendra Jawali
    • 2
  • Altafhusain B. Nadaf
    • 1
    Email author
  1. 1.Department of BotanyUniversity of PunePuneIndia
  2. 2.Molecular Biology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations