Skip to main content
Log in

A New Multiplexed Real-Time PCR Assay to Detect Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A new rapid method based on real-time PCR was developed to detect four thermophilic Campylobacter species (Campylobacter jejuni, Campylobacter coli, Campylobacter lari, and Campylobacter upsaliensis) in food samples. The assay targeted the bipA gene for C. upsaliensis and C. lari, whereas the gene encoding the ATP-binding protein CJE0832 was used to detect C. coli and C. jejuni. These genes were chosen for this assay due to their low variability and mutation rate at a species level. The multiplex PCR showed 100% inclusivity for all 25 thermophilic Campylobacter strains tested and 100% exclusivity for 38 non-targeted strains belonging to closely related species. The newly developed real-time PCR could detect down to 102 genomes/reaction and displayed efficiency above 97% for all species except for C. upsaliensis (90.1%). The method proved to be a reliable tool for food analysis, showing 100% sensitivity, 96% efficiency, and 92.45% specificity when validated against the gold standard method UNE-EN ISO 10272:2006 using 200 diverse food samples (meat, fish, fruits and vegetables, and raw milk). In artificially spiked samples, the detection limit of the method was 10 cfu/g in salad, 5 cfu/g in turkey meat, and 1 cfu/g in the rest of meat samples tested. Consequently, the newly designed molecular tool represents a quick and safe alternative to obtain reliable results concerning the presence/absence of the main thermophilic Campylobacter in any food sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Friedman CR, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. In: Nachamkin I, Blaser MJ (eds) Campylobacter. ASM, Washington DC

    Google Scholar 

  • Vandamme P (2000) Taxonomy of the Family Campylobacteraceae. In: Nachamkin I, Blaser MJ (eds) Campylobacter. ASM, Washington, DC

    Google Scholar 

  • Prasad KN, Dixit AK, Ayyagari A (2001) Indian J Med Res 114:112

    Google Scholar 

  • Labarca JA, Sturgeon J, Borenstein L et al (2002) Clin Infect Dis 34:e59

    Article  Google Scholar 

  • On SLW, Jordan PJ (2003) J Clin Microbiol 41:330

    Article  CAS  Google Scholar 

  • Englen MD, Kelley LC (2000) Lett Appl Microbiol 31:421

    Article  CAS  Google Scholar 

  • Denis M, Refrégier-Petton J, Laisney MJ, Ermel G, Salvat G (2001) J Appl Microbiol 91:255

    Article  CAS  Google Scholar 

  • Magistrado PA, Garcia MM, Raymundo AK (2001) Int J Food Microbiol 70:197

    Article  CAS  Google Scholar 

  • Moreno Y, Hernandez M, Ferrus MA et al (2001) Res Microbiol 152:577

    Article  CAS  Google Scholar 

  • Josefsen MH, Cook N, D’Agostino M et al (2004) Appl Environ Microbiol 70:4379

    Article  CAS  Google Scholar 

  • Fermér C, Engvall EO (1999) J Clin Microbiol 37:3370

    Google Scholar 

  • Gorkiewicz G, Feierl G, Shober C et al (2003) J Clin Microbiol 41:2537

    Article  CAS  Google Scholar 

  • Inglis GD, Kalischuk LD (2003) Appl Environ Microbiol 69:3435

    Article  CAS  Google Scholar 

  • Lund M, Nordentoft S, Pedersen K, Madsen M (2004) J Clin Microbiol 42:5125

    Article  CAS  Google Scholar 

  • Engvall EO, Brändström B, Gunnarsson A, Mörner T, Wahlström H, Fermer C (2002) J Appl Microbiol 92:47

    Article  CAS  Google Scholar 

  • Lawson AJ, Shafi MS, Pathak K, Stanley J (1998) Epidemiol Infect 121:547

    Article  CAS  Google Scholar 

  • Eyigor A, Dawson KA, Langlois BE, Pickett CL (1999) J Clin Microbiol 37:1646

    CAS  Google Scholar 

  • Van Doorn LJ, Verschuuren-van Haperen A, Burnens A et al (1999) J Clin Microbiol 37:1790

    Google Scholar 

  • Al Rashid ST, Dakuna I, Louie H et al (2000) J Clin Microbiol 38:1488

    CAS  Google Scholar 

  • Bang DD, Wedderkopp A, Pedersen K, Madsen M (2002) Mol Cell Probes 16:359

    Article  CAS  Google Scholar 

  • Englen MD, Fedorka-Cray PJ (2002) Lett Appl Microbiol 35:353

    Article  CAS  Google Scholar 

  • LaGier MJ, Joseph LA, Passaretti TV, Musser KA, Cirino NM (2004) Mol Cell Probes 18:275

    Article  CAS  Google Scholar 

  • Wolf YI, Carmel L, Koonin V (2006) Correlations between quantitative measures of genome evolution, expression and function. In: Eisenhaber F (ed) Discovering biomolecular mechanisms with computational biology. Springer, New York

    Google Scholar 

  • Rivera MC, Jain R, Moore JE, Lake JA (1998) Proc Natl Acad Sci U S A 95:6239

    Article  CAS  Google Scholar 

  • Jain R, Rivera MC, Lake JA (1999) Proc Natl Acad Sci U S A 96:3801

    Article  CAS  Google Scholar 

  • Daubin V, Gouy M, Perrière G (2002) Genome Res 12:1080

    Article  CAS  Google Scholar 

  • Owens RM, Pritchard G, Skipp P et al (2004) EMBO J 23:3375

    Article  CAS  Google Scholar 

  • Fouts DE, Mongodin EF, Mandrell RE et al (2005) PLoS Biol 3:e15

    Article  CAS  Google Scholar 

  • Anonymous, Microbiology of food and animal feedings stuffs—horizontal method for the detection and enumeration of Campylobacter growing at 41.5 °C. Part 1. Detection method. ISO 10272-1. (International Organization for Standardization, Geneva, 2006).

  • Parkhill J, Wren BW, Mungall K et al (2000) Nature 403:665

    Article  CAS  Google Scholar 

  • Liolios K, Tavernarakis N, Hugenholtz P, Kyrpides NC (2006) Nucleic Acids Res 34:D332

    Article  CAS  Google Scholar 

  • Gundogdu O, Bentley SD, Holden MT, Parkhill J, Dorrell N, Wren BW (2007) BMC Genomics 8:162

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) Nucleic Acids Res 25:4876

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA et al (1997) Nucleic Acids Res 25:3389

    Article  CAS  Google Scholar 

  • Calvó L, Martínez-Planells A, Pardos-Bosch J, Garcia-Gil LJ (2008) Food Anal Methods 1:236

    Article  Google Scholar 

  • Anonymous (2003) Food Microbiology. Validation of Alternative Methods. ISO 16140. International Organization for Standardization, Geneva

  • Rosselló-Mora R, Amann R (2001) FEMS Microbiol Rev 25:39

    Article  Google Scholar 

  • Béjà O, Koonin EV, Aravind L et al (2002) Appl Environ Microbiol 68:335

    Article  CAS  Google Scholar 

  • Shrestha NK, Tuohy MJ, Hall GS, Isada CM, Procop GW (2002) J Clin Microbiol 40:2659

    Article  CAS  Google Scholar 

  • Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Appl Environ Microbiol 69:290

    Article  CAS  Google Scholar 

  • Toma C, Lu Y, Higa N et al (2003) J Clin Microbiol 41:2669

    Article  CAS  Google Scholar 

  • Wilson DA, Yen-Lieberman B, Reischl U, Gordon SM, Procop GW (2003) J Clin Microbiol 41:3327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Social Funds and the Departament d’Universitats, Investigació i Societat de la Informació of Catalonia (Beatriu de Pinós grant to XB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laia Calvó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonjoch, X., Calvó, L., Soler, M. et al. A New Multiplexed Real-Time PCR Assay to Detect Campylobacter jejuni, C. coli, C. lari, and C. upsaliensis . Food Anal. Methods 3, 40–46 (2010). https://doi.org/10.1007/s12161-009-9110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-009-9110-3

Keywords

Navigation