Advertisement

Oncology Reviews

, Volume 1, Issue 4, pp 225–232 | Cite as

Role of CD1A and HSP60 in the antitumoral response of oesophageal cancer

  • Simona Corrao
  • Giampiero La Rocca
  • Rita Anzalone
  • Lorenzo Marasà
  • Felicia Farina
  • Giovanni Zummo
  • Francesco CappelloEmail author
Review

Abstract

Oesophageal cancer (OC) is one of the most common and severe forms of tumor. A wider knowledge of molecular mechanisms which lead to a normal epithelium becoming a neoplasm may reveal new strategies to improve treatment and outcome of this disease.

In this review, we report recent findings concerning molecular events which take place during carcinogenesis of the oesophagus. In particular, we focus on the role of two molecules, CD1a and Hsp60, which are overexpressed in oesophageal and many other types of tumor. Both molecules may present tumor antigens and promote in situ the stimulation of an antitumoral immune activity. We suggest there is a synergistic action between these molecules. Further knowledge about their intracellular pathways and extracellular roles may help develop new antitumoral tools for OC.

Key words

Immune response Dendritic cells Chaperonopathies Chaperonotherapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koppert LB, Wijnhoven BPL, van Dekken H et al (2005) The moecular biology of esophageal adenocarcinoma. J Surg Oncol 92:169–190PubMedCrossRefGoogle Scholar
  2. 2.
    Lambert R, Hainaut P, Parkin DM (2004) Premalignant lesion of the esophagogastric mucosa. Semin Oncol 31:498–512PubMedCrossRefGoogle Scholar
  3. 3.
    Bax DA, Siersema PD, van Vliet AHM, et al (2005) Molecular alterations during development of esophageal adenocarcinoma. J Surg Oncol 92:89–98PubMedCrossRefGoogle Scholar
  4. 4.
    Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 1:G7–G17CrossRefGoogle Scholar
  5. 5.
    Wild CP, Hardie LJ (2003) Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 3:676–684PubMedCrossRefGoogle Scholar
  6. 6.
    Bani-Hani KE, Bani-Hani BK (2007) Columnar lined (Barrett’s) esophagus: Future perspectives. J Gastroenterol Hepatol 2007; Sep 14 [Epub ahead of print]Google Scholar
  7. 7.
    Stoner GD, Gupta A (2001) Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis 22:1737–1746PubMedCrossRefGoogle Scholar
  8. 8.
    Liu K-J, Chu C-L (2006) Current progress in dendritic cell research. J Cancer Mol 2:217–220Google Scholar
  9. 9.
    Liu K-J (2006) Dendritic cell, toll-like receptor, and the immune response system. J Cancer Mol 2:213–215Google Scholar
  10. 10.
    Feagins LA, Souza RF (2005) Molecular targets for treatment of Barrett’s esophagus. Dis Esophagus 18:75–86PubMedCrossRefGoogle Scholar
  11. 11.
    Nair KS, Naidoo R, Chetti R (2006) Microsatellite analysis of the APC genes and immunoexpression of E-cadherin, catenin, and tubulin in esophageal squamous cell cancer. Hum Pathol 37:125–134PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki H, Zhou X, Yin J et al (1995) Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. Hum Mol Genet 4:1883–1887PubMedCrossRefGoogle Scholar
  13. 13.
    Esteve A, Martel-Planche G, Sylla BS et al (1996) Low frequency of p16/CDKN2 gene mutations in esophageal carcinomas. Int J Cancer 22:106–109Google Scholar
  14. 14.
    Muzeau F, Flejou JF, Thomas G, et al (1997) Loss of heterozygosity on chromosome 9 and p16 (MTS1, CDKN2) gene mutations in esophageal cancers. Int J Cancer 72:27–30PubMedCrossRefGoogle Scholar
  15. 15.
    Buskens CJ, Ristimaki A, Offerhaus GJ et al (2003) Role of cyclooxygenase-2 in the development and treatment of oesophageal adenocarcinoma. Scand J Gastroenterol Suppl 23:87–93CrossRefGoogle Scholar
  16. 16.
    Kaur BS, Khamnehei N, Iravani M et al (2002) Rofecoxib inhibits cyclooxygenase-2 expression and activity and reduces cell proliferation in Barrett’s esophagus. Gastroenterology 123:60–67PubMedCrossRefGoogle Scholar
  17. 17.
    Cappello F, Rappa F, Bucchieri F et al (2003) CD1a: a novel biomarker for Barrett’s metaplasia? Lancet Oncol 4:498CrossRefGoogle Scholar
  18. 18.
    Cappello F, Zummo G (2005) CD1a immunopositivity could help to distinguish Barrett’s metaplasia from heterotopic gastric mucosa. J Gastroenterol Hepatol 20:1308–1309PubMedCrossRefGoogle Scholar
  19. 19.
    Vincent MS, Xiong X, Grant EP et al (2005) CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J Immunol 175:6344–6351PubMedGoogle Scholar
  20. 20.
    Coventry BJ, Heinzel S (2004a) CD1a in human cancers: a new role for an old molecule. Trends Immunol 25:242–248PubMedCrossRefGoogle Scholar
  21. 21.
    Porcelli SA, Segelke BW, Sugita M et al (1998) The CD1 family of lipid antigen-presenting molecules. Immunol Today 19:362–368PubMedCrossRefGoogle Scholar
  22. 22.
    Dieu-Nosjean M-C, Massacrier C, Homey B et al (2000) Macrophage inflammatory protein 3α is expressed at inflamed epithelial surface and is the most potent chemokine known in attracting Langerhans cell precursors. J Exp Med 192:705–717PubMedCrossRefGoogle Scholar
  23. 23.
    De Libero G (2004) The Robin Hood of antigen presentation. Science 303:485–487PubMedCrossRefGoogle Scholar
  24. 24.
    Coventry BJ, Heinzel S (2004b) Reply: Is CD1a involved in antitumour immune responses during carcinogenesis? Br J Cancer 90:939CrossRefGoogle Scholar
  25. 25.
    Cappello F, Rappa F, Anzalone R et al (2005a) CD1a expression by Barrett’s metaplasia of gastric type may help to predict its evolution towards cancer. Br J Cancer 92:888–890PubMedCrossRefGoogle Scholar
  26. 26.
    La Rocca G, Anzalone R, Bucchieri F et al (2004) CD1a and anti-tumour response. Immunology Letters 95:1–4PubMedCrossRefGoogle Scholar
  27. 27.
    Hillebrand EE, Neville AM, Coventry BJ (1999) Immunohistochemical localization of Cd1a-positive putative dendritic cells in human breast tumours. Br J Cancer 79:940–944CrossRefGoogle Scholar
  28. 28.
    Bell D, Chomarat P, Broyles D et al (1999) In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med 190:1417–1426PubMedCrossRefGoogle Scholar
  29. 29.
    Treilleux I, Blay JY, Bendriss-Vermare N et al (2004) Dendritic cell infiltration and prognosis of early breast cancer. Clin Cancer Res 10:7466–7474PubMedCrossRefGoogle Scholar
  30. 30.
    La Rocca G, Anazalone R, Corrao S et al (2007) CD1a down-regulation in primary invasive ductal breast carcinoma may predict regional lymph node invasion and patient out come. Histopathology In Press; doi: 10.1111/j.1365-2559.2007.02919.x.Google Scholar
  31. 31.
    Ikeguchi M, Ikeda M, Tatebe S et al (1998) Clinical significance of dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 5:1185–1189PubMedGoogle Scholar
  32. 32.
    Sandel MH, Dadabayev AR, Manon AG et al (2005) Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 11:2576–2582PubMedCrossRefGoogle Scholar
  33. 33.
    Adam JK, Odhav B, Bhoola KD (2003) Immune responses in cancer. Pharmacol Therapeutics 99:113–132CrossRefGoogle Scholar
  34. 34.
    Andrews DM, Andoniou CE, Scalzo AA et al (2005) Cross-talk between dendritic cells and natural killer cells in viral infection. Mol Immunol 42:547–555PubMedCrossRefGoogle Scholar
  35. 35.
    Lindquist S (1986) The heat shock response. Am Rev Biochem 55:1151–1191CrossRefGoogle Scholar
  36. 36.
    Macario AJ, Conway de Macario E (2005) Sick chaperones, cellular stress, and disease. N Engl J Med 353:1489–1501PubMedCrossRefGoogle Scholar
  37. 37.
    Macario AJ, Conway de Macario E (2007a) Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosc 12:2588–2600CrossRefGoogle Scholar
  38. 38.
    Macario AJ, Conway de Macario E (2007b) Chaperonopathies and chaperonotherapy. FEBS Lett 581:3681–3688PubMedCrossRefGoogle Scholar
  39. 39.
    Macario AJ, Conway de Macario E (2007c) Chaperonopathies by defect, excess, or mistake. Ann NY Acad Sci 1113:178–191PubMedCrossRefGoogle Scholar
  40. 40.
    Calderwood SK, Khaleque MA, Sawyer DB et al (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172PubMedCrossRefGoogle Scholar
  41. 41.
    Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic predictive, and treatment implications. Cell Stress Chaperones 10:86–103PubMedCrossRefGoogle Scholar
  42. 42.
    Ciocca DR, Clark GM, Tendon AK (1993) Heat shock protein HSP70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst 85:570–574PubMedCrossRefGoogle Scholar
  43. 43.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 34:1999–2009CrossRefGoogle Scholar
  44. 44.
    van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRefGoogle Scholar
  45. 45.
    Conford PA, Dodson AR, Parson KF et al (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60:7099–7105Google Scholar
  46. 46.
    Elpek GO, Karaveli S, Simsek T et al (2003) Expression of hest-shock proteins Hsp27, Hsp70 and Hsp90 in malignant epithelial tumor of the ovaries. APMIS 111:523–530PubMedCrossRefGoogle Scholar
  47. 47.
    Kapranos N, Kaminea A, Konstantinopoulos PA et al (2002) Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinoma and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance. J Cancer Res Clin Oncol 128:426–432PubMedCrossRefGoogle Scholar
  48. 48.
    King KL, Li AF, Chan GY et al (2000) Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival. Cancer 88:2464–2470PubMedCrossRefGoogle Scholar
  49. 49.
    Lim SO, Park SG, Yoo J-M et al (2005) Expression of heat shock proteins (HSP27, HSP60, HSP70, HSP90, GRP78, GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules. World J Gastroenterol 11:2072–2079PubMedGoogle Scholar
  50. 50.
    Soldes OS, Kuick RD, Thompson IA et al (1999) Differential expression of HSP27 in normal oesophagus, Barrett’s metaplasia and adenocarcinomas. Br J Cancer 79:595–603PubMedCrossRefGoogle Scholar
  51. 51.
    Lambot MA, Peny MO, Fayt I et al (2000) Overexpression of 27-kDa heat shock protein relates to poor histological differentiation in human oesophageal squamous cell carcinoma. Histopathology 36:326–330PubMedCrossRefGoogle Scholar
  52. 52.
    Kawanishi K, Shiozaki H, Doki Y et al (1999) Prognostic significance of heat shock proteins 27 and 70 in patients with squamous cell carcinoma of the esophagus. Cancer 85:1649–1657PubMedCrossRefGoogle Scholar
  53. 53.
    Nakajima M, Kuwano H, Miyazaki T et al (2002) Significant correlation between expression of heat shock proteins 27, 70 and lymphocyte infiltration in esophageal squamous cell carcinoma. Cancer Lett 178:99–106PubMedCrossRefGoogle Scholar
  54. 54.
    Noguchi T, Takeno S, Shibata T et al (2002) Expression of heat shock protein 70 in grossly resected esophageal squamous cell carcinoma. Ann Thorac Surg 74:222–226PubMedCrossRefGoogle Scholar
  55. 55.
    Itoh H, Komatsuda A, Ohtani H et al (2002) Mammalian HSP60 is quickly sorted into the mitochondria under conditions of dehydratation. Eur J Biochem 269:5931–5938PubMedCrossRefGoogle Scholar
  56. 56.
    Martin J (1997) Molecular chaperones and mitochondrial protein folding. J Bioenerg Biomembr 29:35–43PubMedCrossRefGoogle Scholar
  57. 57.
    Dundas SR, Lawrie LC, Rooney P et al (2004) Mortalin is overexpressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 205:74–81CrossRefGoogle Scholar
  58. 58.
    Wadhwa R, Takano S, Kaur K et al (2005) Identification and characterization of molecular interaction between mortalin/mt Hsp70 and HSP60. Bioch J 391:185–190CrossRefGoogle Scholar
  59. 59.
    Cappello F, Bellafiore M, Palma A et al (2002) Expression of 60-kD heat shock protein increases during carcinogenesis in the uterine exocervix. Pathobiology 70:83–88PubMedCrossRefGoogle Scholar
  60. 60.
    Cappello F, Bellafiore M, David S et al (2003b) Ten kilodalton heat shock protein (HSP10) is overexpressed during carcinogenesis of large bowel and uterine exocervix. Cancer Lett 196:35–41PubMedCrossRefGoogle Scholar
  61. 61.
    Cappello F, Bellafiore M, Palma A et al (2003c) 60 kDa chaperonin (HSP60) is over-expressed during colorectal carcinogenesis. Eur J Histochem 47:105–110PubMedGoogle Scholar
  62. 62.
    Cappello F, Rappa F, David S et al (2003d) Immunohistochemical evaluation of PCNA, p53, HSP60, HSP10 and MUC-2 presence and expression in prostate carcinogenesis. Anticancer Res 2003d; 23:1325–1331Google Scholar
  63. 63.
    Cappello F, David S, Rappa F et al (2005b) The expression of HSP60 and HSP10 in large bowel carcinomas with lymph node metastase. BMC Cancer 5:139PubMedCrossRefGoogle Scholar
  64. 64.
    Cappello F, Di Stefano A, D’Anna SE et al (2005c) Immunopositivity of heat shock protein 60 as a biomarker of bronchial carcinogenesis. Lancet Oncol 6:816PubMedCrossRefGoogle Scholar
  65. 65.
    Cappello F, Di Stefano A, David S et al (2006) HSP60 and HSP10 down-regulation predicts bronchial epithelial carcinogenesis in smokers with chronic obstructive disease. Cancer 107:2417–2424PubMedCrossRefGoogle Scholar
  66. 66.
    Cappello F, David S, Ardizzone N et al (2006b) Expression of Heat Shock Proteins Hsp10, Hsp27, Hsp60, Hsp70 and Hsp90 in urothelial carcinoma of urinary bladder. J Cancer Molec 2:73–77Google Scholar
  67. 67.
    Johansson B, Pourian MR, Chuan Y-C et al (2006) Proteomic comparison of prostate cancer cell lines LNCaP-FGC and LNCaP-r reveals heat shock protein 60 as a marker for prostate malignancy. Prostate 66:1235–1244PubMedCrossRefGoogle Scholar
  68. 68.
    Mori D, Nakafusa Y, Miyazaki K et al (2005) Differential expression of janus kinase 3 (JAK3), matrix metalloprotease 13 (MMP13), heat shock protein 60 (HSP60), and mouse double minute 2 (MDM2) in human colorectal cancer progression using human cancer cDNA microarrays. Path Res Pract 201:777–789PubMedCrossRefGoogle Scholar
  69. 69.
    Thomas X, Campas L, Mounier C et al (2005) Expression of heat shock proteins is associated with major adverse prognostic factors in acute myeloid leukaemia. Leuk Res 29:1049–1058PubMedCrossRefGoogle Scholar
  70. 70.
    Lebret T, Watson RWG, Molinié V et al (2003) Heat shock proteins HSP27, HSP60, HSP70 and HSP90: expression in bladder carcinoma. Cancer 98:970–977PubMedCrossRefGoogle Scholar
  71. 71.
    Kimura E, Enns RE, Alcaraz JE et al (1993) Correlation of the survival of ovarian cancer patients with mRNA expression of the 60-kD heat shock protein HSP-60. J Clin Oncol 11:891–889PubMedGoogle Scholar
  72. 72.
    Schneider J, Jimenez E, Marenbach K et al (1999). Immunohistochemical detection of HSP60-expression in human ovarian cancer. Correlation with survival in a series of 247 patients. Anticancer Res 19:2141–2146PubMedGoogle Scholar
  73. 73.
    Faried A, Sohda M, Nakajima M et al (2004) Expression of heat shock protein Hsp60 correlated with the apoptotic index and patients in human oesophageal squamous cell carcinoma. Eur J Cancer 40:2804–2811PubMedCrossRefGoogle Scholar
  74. 74.
    Thomas ML, Samanant UC, Deshpande RK et al (2000) Gammadelta T cells lyse autologous and allogenic oesophageal tumours: involvement of heat-shock proteins in tumour cell lysis. Cancer Immunol Immunoth 48:653–659CrossRefGoogle Scholar
  75. 75.
    Kaufmann SHE (1992) The cellular immune response to heat shock proteins. Cell Mol Life Sci 48:640–643CrossRefGoogle Scholar
  76. 76.
    Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476PubMedCrossRefGoogle Scholar
  77. 77.
    Di Felice V, David S, Cappello F et al (2005) Is chlamydial heat shock protein 60 a risk factor for oncogenesis? Cell Mol Life Sci 62:4–9PubMedCrossRefGoogle Scholar
  78. 78.
    Chen W, Syldath U, Bellmann K et al (1999) Human 60-kDa heat shock protein: a danger signal to the innate immune system. J Immunol 162:3212PubMedGoogle Scholar
  79. 79.
    Flohé SB, Brüggermann J, Lendemans S et al (2003) Human heat shock protein 60 induces maturation of dendritic cells versus a Th1-promoting phenotype. J Immunol 170:2340–2348PubMedGoogle Scholar
  80. 80.
    Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M et al (2005) Heat Shock Protein 60 Activates B Cells via the TLR4-MyD88 pathway. J Immunol 175:3594–3602PubMedGoogle Scholar
  81. 81.
    Zanin-Zhorov A, Nussbaum G, Franitza S et al (2003) T cells respond to heat shock protein 60 via TRL2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17:1567–1569PubMedGoogle Scholar
  82. 82.
    Zanin-Zhorov A, Tal G, Shivtiel S et al (2005) Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol 175:276–285PubMedGoogle Scholar
  83. 83.
    Kol A, Bourcier T, Lichtman A et al (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103:571–577PubMedCrossRefGoogle Scholar
  84. 84.
    Kol A, Lichtman AH, Finberg RW et al (2000) Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor of HSP60 activation of mononuclear cells. J Immunol 164:13–17PubMedGoogle Scholar
  85. 85.
    Osterloh A, Kalinke U, Weiss S et al (2006) Synergistic and differential modulation of immune responses by HSP60 and LPS. J Biol Chem In Press; doi/10.1074/jbc.M608666200Google Scholar
  86. 86.
    Wheeler DS, Wong HR (2007) Heat shock response and acute lung injury. Free Rad Biol Med 42:1–14PubMedCrossRefGoogle Scholar
  87. 87.
    Zimmermann KC, Sarbia M, Weber AA et al (1999). Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204PubMedGoogle Scholar
  88. 88.
    Jiang J-G, Tang J-B, Chen C-L et al (2004) Expression of cyclooxygenase-2 in human esophageal squamous cell carcinomas. World J Gastroenterol 10:2168–2173PubMedGoogle Scholar
  89. 89.
    Billack B, Heck DE, Mariano TM et al (2002) Induction of cyclooxygenase-2 by heat shock protein 60 in macrophages and endothelial cells. Am J Physiol Cell Physiol 283:1257–1277Google Scholar
  90. 90.
    Jalili A, Makowiski M, Switaj Tet al (2004) Effective photoimmunotherapy of murine colon carcinoma induced by the combination of photodynamic therapy and dendritic cells. Clin Cancer Res 10:4498–4508PubMedCrossRefGoogle Scholar
  91. 91.
    Foroulis CN, Thorpe JAC (2006) Photodynamic therapy (PTD) in Barrett’s esophagus with dysplasia or early cancer. Eur J Cardio-Thor Surg 29:30–34CrossRefGoogle Scholar
  92. 92.
    Cappello F, Czarnecka AM, Rocca GL et al (2007) Hsp60 and Hsp10 as anti-tumour molecular agents. Cancer Biol Ther (Epub ahead of print)Google Scholar
  93. 93.
    Brocchieri L, Conway de Macario E, Macario AJ (2007) Chaperonomics, a new tool to study ageing and associated diseases. Mech Ageing Dev 128:125–136PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Simona Corrao
    • 1
  • Giampiero La Rocca
    • 1
  • Rita Anzalone
    • 1
  • Lorenzo Marasà
    • 1
  • Felicia Farina
    • 1
  • Giovanni Zummo
    • 1
  • Francesco Cappello
    • 1
    Email author
  1. 1.Dipartimento di Medicina Sperimentale, Sezione di Anatomia UmanaUniversità di PalermoPalermoItaly

Personalised recommendations