Skip to main content
Log in

Marine Photosynthetic Microbial Fuel Cell for Circular Renewable Power Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Marine photosynthetic microbial fuel cells (mpMFCs) can utilize marine photosynthetic microorganisms to drive electrical energy-generating electrochemical reactions. Due to improved ionic mobility and superior electrical conductivity of seawater, it is a suitable electrolyte for operating bio-electrochemical devices at operating elevated salinities. This study examined the use of seawater as a conducting medium in two-chambered MFCs to enhance power production in conjunction with a marine photosynthetic biocathode as an alternative to the abiotic chemical cathode. Using a modified BG11 seawater medium as catholyte, marine cyanobacteria were grown and maintained in the MFC cathode compartment. After a significant quantity of biomass had formed, it was harvested for use as the substrate for anode microorganisms. Isolated marine cyanobacteria from photosynthetic biocathode were identified using 16 s rRNA and Sanger DNA sequencing. In electrochemical characterization, mMFC, maximum power density (Pmax) was 147.84 mWm−2 and maximum current density (Jmax) reached 1311.82 mAm−2. In mpMFC, Pmax was 104.48 mWm−2 and Jmax was 1107.27 mAm−2. Pmax was 53.14 mWm−2 and Jmax was 501.81 mAm−2 in comparable freshwater MFC employing platinum catalyst, which proves that mMFC and mpMFC worked better. Dapis pleousa and Synechococcus moorigangaii were identified as dominant marine cyanobacteria. It was demonstrated that mpMFC, operated using seawater and employing a cyanobacteria biocathode, is suitable for circularized renewable energy production. The outcomes of this study imply that mpMFCs are good candidates for circular renewable energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Should any raw data files be needed in another format, they are available from the corresponding author upon reasonable request.

References

  1. Obileke KC, Onyeaka H, Meyer EL, Nwokolo N. (2021) Microbial fuel cells, a renewable energy technology for bio-electricity generation: a mini-review. Electrochem. commun. 125 https://doi.org/10.1016/j.elecom.2021.107003

  2. Gajda I, Greenman J, Santoro C, Serov A, Atanassov P, Melhuish C (2019) Multi-functional microbial fuel cells for power, treatment and electro-osmotic purification of urine. J Chem Technol Biotechnol 94(7):2098–2106. https://doi.org/10.1002/jctb.5792

    Article  CAS  PubMed  Google Scholar 

  3. Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R (2023) The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: applications and technology readiness level. Sci Total Environ. 879. https://doi.org/10.1016/j.scitotenv.2023.162757

  4. Duu JL, Jo-Shu CJYL (2015) Microalgae–microbial fuel cell: a mini review. Bioresour Technol 198:891–895. https://doi.org/10.1016/j.biortech.2015.09.061

    Article  CAS  Google Scholar 

  5. Zuo Y, Xing D, Regan JM, Logan BE (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74(10):3130–3137. https://doi.org/10.1128/AEM.02732-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hyung JK, Hyung SP, Moon SH, In SC, Mia KBHK (2002) A mediator-less microbial fuel cell using a metal reducing bacterium. Shewanella putrefaciens Enzyme Microb Technol 30(2):145–152. https://doi.org/10.1016/S0141-0229(01)00478-1

    Article  Google Scholar 

  7. Holmes DE, Bond DR, Lovley DR (2004) Electron transfer by Desulfobulbus propionicus to Fe ( III ) and graphite electrodes. Appl Environ Microbiol 70(2):1234–1237. https://doi.org/10.1128/AEM.70.2.1234-1237.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bond DR, Lovley DR, Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol. 71(4). https://doi.org/10.1128/AEM.71.4.2186-2189.2005

  9. Defeng X, Yi Z, Shaoan C, Regan JM, BEL, (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ Sci Technol 42(11):4146–4151. https://doi.org/10.1021/es800312v

    Article  CAS  Google Scholar 

  10. Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M (2019) Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact 18(1):1–14. https://doi.org/10.1186/s12934-019-1087-z

    Article  Google Scholar 

  11. Cruz-noriega MDL, Benites SM, Rojas-flores S, Otiniano NM (2023) Use of wastewater and electrogenic bacteria to generate eco-friendly electricity through microbial fuel cells. Sustainability. 15. https://doi.org/10.3390/su151310640

  12. Milner EM, Popescu D, Curtis T, Head IM, Scott K, Yu EH (2016) Microbial fuel cells with highly active aerobic biocathodes. J Power Sources 324:8–16. https://doi.org/10.1016/j.jpowsour.2016.05.055

    Article  CAS  Google Scholar 

  13. Dina K, Kateryna SYK (2021) Microalgae and cyanobacteria as biological agents of biocathodes in biofuel cells. J Biotechnol Comput Biol Bionanotechnol. 102(4):437–44. https://doi.org/10.5114/2Fbta.2021.111108

    Article  Google Scholar 

  14. Han B, Goh H, Chyuan H, Yee M, Chen W, Ling K (2019) Sustainability of direct biodiesel synthesis from microalgae biomass: a critical review. Renew Sustain Energy Rev 107:59–74. https://doi.org/10.1016/j.rser.2019.02.012

    Article  CAS  Google Scholar 

  15. Lee SY, Cho JM, Chang YK, Oh Y (2017) Cell disruption and lipid extraction for microalgal biorefineries: a review. Bioresour Technol 244:1317–1328. https://doi.org/10.1016/j.biortech.2017.06.038

    Article  CAS  PubMed  Google Scholar 

  16. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC (2017) Microalgae biorefinery: high value products perspectives. Bioresour Technol 229:53–62. https://doi.org/10.1016/j.biortech.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  17. Commault AS, Lear G, Novis P, Weld RJ (2014) Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell. New Zeal J Bot 52(1):37–41. https://doi.org/10.1080/0028825X.2013.870217

    Article  Google Scholar 

  18. JT Babauta, H Beyenal, 2015 Biofilms in bioelectrochemical systems: from laboratory practice to data interpretation 121 345-366 https://doi.org/10.1002/9781119097426.ch5

  19. Nguyen HATT, Le GTH, Park SG, Jadhav DA, Le TTQ, Kim H, Vinayak V, Lee G, Yoo K, Song KJC (2024) Optimizing electrochemically active microorganisms as a key player in the bioelectrochemical system: identification methods and pathways to large-scale implementation. Sci Total Environ. 914. https://doi.org/10.1016/j.scitotenv.2023.169766

  20. Khan MJ, Singh N, Mishra S, Ahirwar A, Bast F, Varjani S, Schoefs B, Marchand J, Rajendran K, Banu JR, Saratale GD, Saratale RGVV (2022) Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: updates, challenges and innovations. Chemosphere. 288(part 2). https://doi.org/10.1016/j.chemosphere.2021.132589

  21. Reimers CE, Wolf M, Yvan ACL (2022) Benthic microbial fuel cell systems for marine applications. J Power Sources. 522. https://doi.org/10.1016/j.jpowsour.2022.231033

  22. Sonawane JM, Mahadevan R, Pandey A, Greener J (2022) Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon 8:e12353. https://doi.org/10.1016/j.heliyon.2022.e12353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grattieri M, Suvira M, Hasan K, Minteer SD (2016) Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells. J Power Sources. 1–9. https://doi.org/10.1016/j.jpowsour.2016.11.090

  24. Wang R, Wu X, Liu C, Yang J, Luo X, Zou L (2022) Hierarchical porous carbon fibers for enhanced interfacial electron transfer of electroactive biofilm electrode. Catalysts. 12(10). https://doi.org/10.3390/catal12101187

  25. Santoro C, Arbizzani C, Erable B, Ieropoulos I (2017) Microbial fuel cells: from fundamentals to applications. A review J Power Sources 356:225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109

    Article  CAS  PubMed  Google Scholar 

  26. Nazeer Z, Fernando EYF (2022) A novel growth and isolation medium for exoelectrogenic bacteria. Enzyme Microb Technol. 155. https://doi.org/10.1016/j.enzmictec.2022.109995

  27. Morin N, Vallaeys T, Hendrickx L, Natalie L, Wilmotte A (2010) An efficient DNA isolation protocol for filamentous cyanobacteria of the genus Arthrospira. J Microbiol Methods 80:148–154. https://doi.org/10.1016/j.mimet.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  28. Asahi Y, Miura J, Tsuda T, Kuwabata S, Tsunashima K, Noiri Y (2015) Simple observation of Streptococcus mutans biofilm by scanning electron microscopy using ionic liquids. AMB Express. 5(6):8. https://doi.org/10.1186/s13568-015-0097-4

    Article  CAS  Google Scholar 

  29. Kannan N, Donnellan P (2021) Algae-assisted microbial fuel cells: a practical overview. Bioresour Technol Reports 15:100747. https://doi.org/10.1016/j.biteb.2021.100747

    Article  CAS  Google Scholar 

  30. Foster RA, Zehr JP (2019) Diversity, genomics, and distribution of phytoplankton-cyanobacterium single-cell symbiotic associations. Annu Rev Microbiol 73:435–456. https://doi.org/10.1146/annurev-micro-090817-062650

    Article  CAS  PubMed  Google Scholar 

  31. Zarkov A, Kareiva A, Tamasauskaite-Tamasiunaite L (2023) Advances in functional inorganic materials prepared by wet chemical methods. Crystals 13(2):324. https://doi.org/10.3390/cryst13020324

    Article  CAS  Google Scholar 

  32. Lashari NUR, Zhao M, Zheng Q, Gong H, Song X (2018) Good lithium-ion insertion/extraction characteristics of a novel double metal doped hexa-vanadate compounds used in an inorganic aqueous solution. Energ Fuel 32(9):10016–10023. https://doi.org/10.1021/acs.energyfuels.8b02041

    Article  CAS  Google Scholar 

  33. Senthilkumar ST, Go W, Han J, Thuy LPT, Kishor K, Kim Y (2019) Emergence of rechargeable seawater batteries. J Mater Chem 7:22803–22825. https://doi.org/10.1039/C9TA08321A

    Article  CAS  Google Scholar 

  34. Amiri M, Bélanger D (2021) Physicochemical and electrochemical properties of water-in-salt electrolytes. Chemsuschem 14:2487–2500. https://doi.org/10.1002/cssc.202100550

    Article  CAS  PubMed  Google Scholar 

  35. Miyahara M, Kouzuma A, Watanabe K (2015) Effects of NaCl concentration on anode microbes in microbial fuel cells. AMB Express. 5(34). https://doi.org/10.1186/s13568-015-0123-6

  36. Thomas D, Rasheed Z, Jagan JS (2015) Study of kinetic parameters and development of a voltammetric sensor for the determination of butylated hydroxyanisole (BHA ) in oil samples. J Food Sci Technol 52:6719–6726. https://doi.org/10.1007/s13197-015-1796-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zavala MÁL, Peña OIG, Ruelas HC, Mena CD, Guizani M (2019) Use of cyclic voltammetry to describe the electrochemical behavior of a dual-chamber microbial fuel cell. Energies. 12(18). https://doi.org/10.3390/en12183532

  38. Jiang Y, Zeng RJ (2019) Bidirectional extracellular electron transfers of electrode-biofilm: mechanism and application. Bioresour Technol 271:439–448. https://doi.org/10.1016/j.biortech.2018.09.133

    Article  CAS  PubMed  Google Scholar 

  39. Kumar SS, Kumar V, Kumar R, Malyan SK, Pugazhendhi A (2019) Microbial fuel cells as a sustainable platform technology for bioenergy, biosensing, environmental monitoring, and other low power device applications. Fuel 255:115682. https://doi.org/10.1016/j.fuel.2019.115682

    Article  CAS  Google Scholar 

  40. Reimers CE, Wolf M, Alleau Y, Li C (2022) Benthic microbial fuel cell systems for marine applications. J Power Sources 522:231033. https://doi.org/10.1016/j.jpowsour.2022.231033

    Article  CAS  Google Scholar 

  41. Jayathilake C, Dilangani GP, Bandara S, Nazeer Z, Thilini N, Bandara W, Fernando EY (2022) The use of Statin-class compounds to suppress methanogenesis in lake sediment inoculated microbial fuel cells. Bioresour Technol Rep 20:101272. https://doi.org/10.1016/j.biteb.2022.101272

    Article  CAS  Google Scholar 

  42. Luimstra VM, Kennedy SJ, Güttler J, Wood SA, Williams DE, Packer MA (2014) A cost-effective microbial fuel cell to detect and select for photosynthetic electrogenic activity in algae and cyanobacteria. J Appl Phycol 26:15–23. https://doi.org/10.1007/s10811-013-0051-2

    Article  CAS  Google Scholar 

  43. Ahirwar A, Das S, Das S, Yang YH, Bhatia SK, Vinayak V, Ghangrekar MM (2023) Photosynthetic microbial fuel cell for bioenergy and valuable production: a review of circular bio-economy approach. Algal Res 70:102973. https://doi.org/10.1016/j.algal.2023.102973

    Article  Google Scholar 

  44. Khan MJ, Das S, Vinayak V, Pant D, Ghangrekar MM (2022) Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. Chemosphere 291:132841. https://doi.org/10.1016/j.chemosphere.2021.132841

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support provided by the RUSL microbiology UG special grants scheme and World Bank AHEAD grant scheme is thankfully acknowledged. Instrument access provided for SEM and CV analysis by the Faculty of Technology, RUSL is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

CB, MS, AA, and NT conducted experiments. CB and EF wrote the original draft. SB and ZN provided instrument support and edited the manuscript. EF conceptualized the work, managed the overall project, and acquired funding.

Corresponding author

Correspondence to Eustace Y. Fernando.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3271 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basnayaka, C., Somasiri, M., Ahsan, A. et al. Marine Photosynthetic Microbial Fuel Cell for Circular Renewable Power Production. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10768-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10768-x

Keywords

Navigation