Skip to main content
Log in

Solid-State Fermentation as a Green Technology for Biomass Valorization: Optimization Techniques for Bioprocess—An Overview

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The demand for enzymes that have high industrial applicability has grown significantly in the last decade. An alternative to obtain these enzymes is solid-state fermentation (SSF), in which microorganisms grow on solid substrates with little water, secreting secondary metabolites of high added value. In order to maximize enzyme production in fermentation processes, a set of multivariate statistical techniques were applied to optimize parameters such as incubation temperature, fermentation time, pH, initial moisture content, and spore concentration. Through these techniques, it is possible to investigate the interactions of the effects of the studied variables, in addition to reducing the number of experiments, providing savings in operational terms and a decrease in the amount of reagents used. Thus, this review addresses the main chemometric techniques used in the optimization of enzyme production by microorganisms in SSF in the last 10 years, indicating advantages and disadvantages and their applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh RS, Chauhan K, Kaur K, Pandey A (2020) Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Bioresour Technol Rep 9:100364. https://doi.org/10.1016/j.biteb.2019.100364

    Article  Google Scholar 

  2. Mandari V, Nema A, Devarai SK (2020) Sequential optimization and large scale production of lipase using trisubstrate mixture from Aspergillus niger MTCC 872 by solid state fermentation. Process Biochem 89:46–54. https://doi.org/10.1016/j.procbio.2019.10.026

    Article  CAS  Google Scholar 

  3. Almanaa TN, Vijayaraghavan P, Alharbi NS, Kadaikunnan S, Khaled JM, Alyahya SA (2020) Solid state fermentation of amylase production from Bacillus subtilis D19 using agro-residues. J King Saud Univ Sci 32:1555–1561. https://doi.org/10.1016/j.jksus.2019.12.011

    Article  Google Scholar 

  4. Verma N, Kumar V (2020) Impact of process parameters and plant polysaccharide hydrolysates in cellulase production by Trichoderma reesei and Neurospora crassa under wheat bran based solid state fermentation. Biotechnol Rep 25:e00416. https://doi.org/10.1016/j.btre.2019.e00416

    Article  Google Scholar 

  5. Kobayashi S, Makino A (2009) Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 109:5288–5353. https://doi.org/10.1021/cr900165z

    Article  CAS  PubMed  Google Scholar 

  6. Bhoite RN, Murthy PS (2015) Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food Bioprod Process 94:727–735. https://doi.org/10.1016/j.fbp.2014.10.007

    Article  CAS  Google Scholar 

  7. Das MM, Haridas M, Sabu A (2020) Process development for the enhanced production of bio-nematicide Purpureocillium lilacinum KU8 under solid-state fermentation. Bioresour Technol. 308:123328. 10.1016/j.biortech.2020.123328

  8. Xu L, Sun K, Wang F, Zhao L, Hu J, Ma H, Ding Z (2020) Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. J Environ Manage 270:110904. https://doi.org/10.1016/j.jenvman.2020.110904

    Article  CAS  PubMed  Google Scholar 

  9. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169. https://doi.org/10.1016/S0032-9592(00)00152-7

    Article  CAS  Google Scholar 

  10. Cihangir N, Sarikaya E (2004) Investigation of lipase production by a new isolate of Aspergillus sp. World J Microbiol Biotechnol 20:193–197. https://doi.org/10.1023/B:WIBI.0000021781.61031.3a

    Article  CAS  Google Scholar 

  11. Farinas CS (2015) Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renew Sust Energ Rev 52:179–188. https://doi.org/10.1016/j.rser.2015.07.092

    Article  CAS  Google Scholar 

  12. Granato D, JCB R, Castro IA, Masson ML (2010) Sensory evaluation and physicochemical optimisation of soy-based desserts using response surface methodology. Food Chem 121:899–906. https://doi.org/10.1016/j.foodchem.2010.01.014

    Article  CAS  Google Scholar 

  13. Ebrahimipour G, Sadeghi H, Zarinviarsagh M (2017) Statistical methodologies for the optimization of lipase and biosurfactant by Ochrobactrum intermedium Strain MZV101 in an identical medium for detergent applications. Molecules 22:1460. https://doi.org/10.3390/molecules22091460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Asgher M, Wahab A, Bilal M, HMN I (2016) Lignocellulose degradation and production of lignin modifying enzymes by Schizophyllum commune IBL-06 in solid-state fermentation. Biocatal Agric Biotechnol 6:195–201. https://doi.org/10.1016/j.bcab.2016.04.003

    Article  Google Scholar 

  15. Khanahmadi M, Arezi I, Amiri MS, Miranzadeh M (2018) Bioprocessing of agro-industrial residues for optimization of xylanase production by solid-state fermentation in flask and tray bioreactor. Biocatal Agric Biotechnol 13:272–282. https://doi.org/10.1016/j.bcab.2018.01.005

    Article  Google Scholar 

  16. Ezeilo UR, Lee CT, Huyop F, Zakaria II, Wahab RA (2019) Raw oil palm frond leaves as cost-effective substrate for cellulase and xylanase productions by Trichoderma asperellum UC1 under solid-state fermentation. J Environ Manage 243:206–217. https://doi.org/10.1016/j.jenvman.2019.04.113

    Article  CAS  PubMed  Google Scholar 

  17. El-Sheikh MA, Rajaselvam J, Abdel-Salam EM, Vijayaraghavan P, Alatar AA, Biji GD (2020) Paecilomyces sp. ZB is a cell factory for the production of gibberellic acid using a cheap substrate in solid state fermentation. Saudi J Biol Sci 9:2431–2438. https://doi.org/10.1016/j.sjbs.2020.06.040

    Article  CAS  Google Scholar 

  18. Ezeilo UR, Wahab RA, Mahat NA (2020) Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation. Renew Energy 156:1301–1312. https://doi.org/10.1016/j.renene.2019.11.149

    Article  CAS  Google Scholar 

  19. Putri DN, Khootama A, Perdani MS, Utami TS, Hermansyah H (2020) Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Rep 6:331–335. https://doi.org/10.1016/j.egyr.2019.08.064

    Article  Google Scholar 

  20. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  21. Lorenz JG, LLF C, Suchara EA, Santana ES (2014) Multivariate optimization of the QuEChERS-GC-ECD method and pesticide investigation residues in apples, strawberries, and tomatoes produced in Brazilian South. J Braz Chem Soc 25:1583–1591. https://doi.org/10.5935/0103-5053.20140143

    Article  CAS  Google Scholar 

  22. Soccol CR, ESF C, LAJ d L, LSG K, Woiciechowsi AL, LPS V (2017) Recent developments and innovations in solid state fermentation. Biotechnol Res Innov 1:52–71. https://doi.org/10.1016/j.biori.2017.01.002

    Article  Google Scholar 

  23. Cerda A, Artola A, Barrena R, Font X, Gea T, Sánchez A (2019) Innovative production of bioproducts from organic waste through solid-state fermentation. Front Sustain Food. Syst 3:1–6. https://doi.org/10.3389/fsufs.2019.00063

    Article  Google Scholar 

  24. Mejias L, Cerda A, Barrena R, Gea T, Sánchez A (2018) Microbial strategies for cellulase and xylanase production through solid-state fermentation of digestate from biowaste. Sustainability 10:2433. https://doi.org/10.3390/su10072433

    Article  CAS  Google Scholar 

  25. Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int J Biol Macromol 86:–656, 669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

  26. RJS DC, Sato HH (2015) Enzyme production by solid state fermentation: general aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valori 6(6):1085–1093. https://doi.org/10.1007/s12649-015-9396-x

    Article  CAS  Google Scholar 

  27. Walia A, Mehta P, Chauhan A, Shirkot CK (2013) Optimization of cellulase-free xylanase production by alkalophilic Cellulosimicrobium sp. CKMX1 in solid-state fermentation of apple pomace using central composite design and response surface methodology. Ann Microbiol 63:187–198. https://doi.org/10.1007/s13213-012-0460-5

    Article  CAS  Google Scholar 

  28. Arora S, Dubey M, Singh P, Rani R, Ghosh S (2017) Effect of mixing events on the production of a thermo-tolerant and acid-stable phytase in a novel solid-state fermentation bioreactor. Process Biochem 61:12–23. https://doi.org/10.1016/j.procbio.2017.06.009

    Article  CAS  Google Scholar 

  29. Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state fermentation technology: design, applications and engineering aspects. J Biotechnol 269:16–34. https://doi.org/10.1016/j.jbiotec.2018.01.010

    Article  CAS  PubMed  Google Scholar 

  30. Dos Santos TC, Abreu Filho G, de Brito AR, AJV P, RCF B, Franco M (2016) Production and characterization of cellulolytic enzymes by Aspergillus niger and Rhizopus sp. by solid state fermentation of prickly pear. Rev Caatinga 29(1):222–233. https://doi.org/10.1590/1983-21252016v29n126rc

    Article  Google Scholar 

  31. Ncube T, Moyo NP, Sibanda T (2015) Production of cellulase by solid state fermentation of brewery spent grains using aspergillus niger fgsc A733. Zimb J Sci Technol 10:119–127 https://journals.nust.ac.zw/index.php/zjst/article/view/68

    Google Scholar 

  32. Manpreet S, Sawraj S, Sachin D, Pankaj S (2005) Influence of process parameters on the production of metabolites in solid-state fermentation. Malays J Microbiol 1:1–9. https://doi.org/10.21161/MJM.120501

    Article  Google Scholar 

  33. Bidin H, Basri M, Radzi SM, Ariff A, RNZRA R, Salleh AB (2009) Optimization of lipase-catalyzed synthesis of palm amino acid surfactant using response surface methodology (RSM). Ind Crops Prod 30:206–211. https://doi.org/10.1016/j.indcrop.2009.03.006

    Article  CAS  Google Scholar 

  34. SLC F, Bruns RE, EGP d S, WNL d S, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, ICSF J, Barros Neto B (2007a) Statistical designs and response surface techniques for the optimization of chromatographic systems. J Chromatogr A 1158:2–14. https://doi.org/10.1016/j.chroma.2007.03.051

    Article  CAS  Google Scholar 

  35. LHS DM, Pimentel AB, Oliveira PC, IMC T, Ruiz HE, Irfan M, Bilal M, das Chagas TP, EGP d S, Salay LC, de Oliveira JR, Franco M (2022) The application of chemometric methods in the production of enzymes through solid state fermentation uses the artificial neural network—a review. Bioenerg Res. https://doi.org/10.1007/s12155-022-10462-w

  36. SLC F, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, EGP d S, Portugal LA, dos Reis PS, Souza AS, WNL d S (2007b) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  37. Bezerra MA, Lemos VA, Novaes CG, de Jesus RM, Souza Filho HR, Araújo SA, JPS A (2020) Application of mixture design in analytical chemistry. Microchem J 152:104336. https://doi.org/10.1016/j.microc.2019.104336

    Article  CAS  Google Scholar 

  38. Dejaegher B, Heyden YV (2011) Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J Pharm Biomed Anal 56:141–158. https://doi.org/10.1016/j.jpba.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  39. Morilla EA, Stegmann PM, Tubio G (2023) Enzymatic cocktail production by a co-cultivation solid-state fermentation for detergent formulation. Food Bioprod Process 140:110–121. https://doi.org/10.1016/j.fbp.2023.05.001

    Article  CAS  Google Scholar 

  40. Singh R, Langyan S, Sangwan S, Gaur P, Khan FN, Yadava P, Rohatgi B, Shrivastava M, Khandelwal A, Darjee S, Sahu PK (2022) Optimization and production of alpha-amylase using Bacillus subtilis from apple peel: comparison with alternate feedstock. Food Biosci 49:101978. https://doi.org/10.1016/j.fbio.2022.101978

    Article  CAS  Google Scholar 

  41. Sahnoun M, Kriaa M, Elgharbi F, Ayadi DZ, Bejar S, Kammoun R (2015) Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions. Int J Biol Macromol 75:73–80. https://doi.org/10.1016/j.ijbiomac.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  42. Vijayaraghavan P, Kalaiyarasi M, SGP V (2015) Cow dung is an ideal fermentation médium for amylase production in solid-state fermentation by Bacillus cereus. J Genet Eng Biotechnol 13:111–117. https://doi.org/10.1016/j.jgeb.2015.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tallapragada P, Dikshit R, Jadhav A, Sarah U (2017) Partial purification and characterization of amylase enzyme under solid state fermentation from Monascus sanguineus. J Genet Eng Biotechnol 15:95–101. https://doi.org/10.1016/j.jgeb.2017.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pereira AS, RIC F, Franco M, Souza Junior EC, Veloso CM, Sampaio VS, Bonomo P, RCF B (2018) Study of alpha-amylase obtained by solid state fermentation of cassava residue in aqueous two-phase systems. Braz J Chem Eng 35:1141–1152. https://doi.org/10.1590/0104-6632.20180353s20170003

    Article  CAS  Google Scholar 

  45. Kaur P, Bhardwaj NK, Sharma J (2016) Process optimization for hyper production of xylanase via statistical methodology from isolated Bacillus pumilus 3GAH using lignocellulosic waste. Biocatal Agric Biotechnol 6:159–167. https://doi.org/10.1016/j.bcab.2016.03.009

    Article  Google Scholar 

  46. Ajijolakewu AK, Leh CP, WNW A, Lee CK (2017) Optimization of production conditions for xylanase production by newly isolated strain Aspergillus niger through solid state fermentation of oil palm empty fruit bunches. Biocatal Agric Biotechnol 11:239–247. https://doi.org/10.1016/j.bcab.2017.07.009

    Article  Google Scholar 

  47. Dos Santos TC, Reis NS, Silva TP, RCF B, Oliveira EA, de Oliveira JR, Franco M (2018) Production, optimisation and partial characterisation of enzymes from filamentous fungi using dried forage cactus pear as substrate. Waste Biomass Valori 9:571–579. https://doi.org/10.1007/s12649-016-9810-z

    Article  CAS  Google Scholar 

  48. Marques GL, Reis NS, Silva TP, MLO F, Oliveira EA, de Oliveira JR, Franco M (2018) Production and characterisation of xylanase and endoglucanases produced by Penicillium roqueforti ATCC 10110 through the solid-state fermentation of rice husk residue. Waste Biomass Valori 9:2061–2069. https://doi.org/10.1007/s12649-017-9994-x

    Article  CAS  Google Scholar 

  49. Desai DI, Iyer BD (2022) Optimization of medium composition for cellulase-free xylanase production by solid-state fermentation on corn cob waste by Aspergillus niger DX-23. Biomass Convers Biorefin 12:1153–1165. https://doi.org/10.1007/s13399-020-00749-3

    Article  CAS  Google Scholar 

  50. Salihu A, Bala M, Alam Z (2016) Lipase production by Aspergillus niger using sheanut cake: an optimization study. J Taibah Univ Sci 10:850–859. https://doi.org/10.1016/j.jtusci.2015.02.011

    Article  Google Scholar 

  51. Musa H, Han PC, Kasim FH, SCB G, Ahmad MA (2017) Turning oil palm empty fruit bunch waste into substrate for optimal lipase secretion on solid state fermentation by Trichoderma strains. Process Biochem 63:35–41. https://doi.org/10.1016/j.procbio.2017.09.002

    Article  CAS  Google Scholar 

  52. Silva TP, Souza LO, Reis NS, Assis SA, MLO F, de Oliveira JR, Oliveira EA, Franco M (2017) Cultivation of Penicillium roqueforti in cocoa shell to produce and characterize its lipase extract. Rev Mex Ing Quim 16:745–756 http://www.rmiq.org/ojs311/index.php/rmiq/article/view/731

    CAS  Google Scholar 

  53. De Oliveira CC, AKS DS, RJS DC (2019) Bioconversion of chicken feather meal by Aspergillus niger: simultaneous enzymes production using a cost-effective feedstock under solid state fermentation. Indian J Microbiol 59:209–216. https://doi.org/10.1007/s12088-019-00792-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ratuchne A, Knob A (2021) A new and unusual β-glucosidase from Aspergillus fumigatus: catalytic activity at high temperatures and glucose tolerance. Biocatal Agric Biotechnol 35:102064. https://doi.org/10.1016/j.bcab.2021.102064

    Article  CAS  Google Scholar 

  55. Das Neves CA, LHS d M, Soares GA, Reis NS, IMC T, Franco M, de Oliveira JR (2022) Production and biochemical characterization of halotolerant β-glucosidase by Penicillium roqueforti ATCC 10110 grown in forage palm under solid-state fermentation. Biomass Convers Biorefin 12:3133–3144. https://doi.org/10.1007/s13399-020-00930-8

    Article  CAS  Google Scholar 

  56. Sharma R, Kocher GS, Rao SS, Oberoi HS (2020) Improved production of multi-component cellulolytic enzymes using sweet sorghum bagasse and thermophilic Aspergillus terreus RWY through statistical process optimization. Waste Biomass Valori 11:3355–3369. https://doi.org/10.1007/s12649-019-00670-5

    Article  CAS  Google Scholar 

  57. PKR G, Kanderi DK, Rajoji G, BSS K, Bontha RR (2020) Optimization of cellulase production by a novel endophytic fungus Pestalotiopsis microspora TKBRR isolated from Thalakona forest. Cellulose 27:6299–6316. https://doi.org/10.1007/s10570-020-03220-8

    Article  CAS  Google Scholar 

  58. Arokiyaraj S, Varghese R, Ahmed BA, Duraipandiyan V, Al-Dhabi NA (2019) Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment. Saudi J Biol Sci 26:378–381. https://doi.org/10.1016/j.sjbs.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  59. Sondhi S, Saini K (2019) Response surface based optimization of laccase production from Bacillus sp. MSK-01 using fruit juice waste as an effective substrate. Heliyon 5:e01718. https://doi.org/10.1016/j.heliyon.2019.e01718

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dos Santos TC, Reis NS, Silva TP, FPP M, RCF B, Franco M (2016) Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci Biotechnol 25:205–211. https://doi.org/10.1007/s10068-016-0031-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Demir T, Hames EE, Oncel SS, Sukan-Vardar F (2015) An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. Int Biodeterior Biodegrad 103:134–140. https://doi.org/10.1016/j.ibiod.2015.04.025

    Article  CAS  Google Scholar 

  62. Lekshmi R, Nisha SA, Kaleeswaran B, Alfarhan AH (2020) Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid state fermentation. J. King Saud Univ Sci 32:1831–1837. https://doi.org/10.1016/j.jksus.2020.01.022

    Article  Google Scholar 

  63. Xiao A, Huang Y, Ni H, Cai H, Yang Q (2015) Statistical optimization for tannase production by Aspergillus tubingensis in solid-state fermentation using tea stalks. Electron J Biotechnol 18:143–147. https://doi.org/10.1016/j.ejbt.2015.02.001

    Article  Google Scholar 

  64. Das D, Selvaraj R, Bhat MR (2019) Optimization of inulinase production by a newly isolated strain Aspergillus flavus var. flavus by solid state fermentation of Saccharum arundinaceum. Biocatal Agric Biotechnol 22:101363. https://doi.org/10.1016/j.bcab.2019.101363

    Article  Google Scholar 

  65. SLY M, de Arruda PV, GMC d S (2022) Statistical sequential optimization of process parameters for inulinase production by Kluyveromyces marxianus ATCC 36907 in solid-state fermentation using beer residue. Biocatal Agric Biotechnol 39:102252. https://doi.org/10.1016/j.bcab.2021.102252

    Article  CAS  Google Scholar 

  66. Da Cunha MC, Silva LC, Sato HH, RJS d C (2018) Using response surface methodology to improve the L-asparaginase production by Aspergillus niger under solid-state fermentation. Biocatal Agric Biotechnol 16:31–36. https://doi.org/10.1016/j.bcab.2018.07.018

    Article  Google Scholar 

  67. Marraiki N, Vijayaraghavan P, Elgorban AM, DSD D, Al-Rashed S, Yassin MT (2020) Low cost feedstock for the production of endoglucanase in solid state fermentation by Trichoderma hamatum NGL1 using response surface methodology and saccharification efficacy. J King Saud Univ Sci 32:1718–1724. https://doi.org/10.1016/j.jksus.2020.01.008

    Article  Google Scholar 

  68. López DN, Galante M, Ruggieri G, Piaruchi J, Dib ME, Duran NM, Lombardi J, de Sanctis M, Boeris V, Risso PH, Spelzini D (2018) Peptidase from Aspergillus niger NRRL 3: Optimization of its production by solid-state fermentation, purification and characterization. LWT - Food Sci Technol 98:485–491. https://doi.org/10.1016/j.lwt.2018.09.013

    Article  CAS  Google Scholar 

  69. Patil NS, Jadhav JP (2014) Enzymatic production of N-acetyl-D-glucosamine by solid state fermentation of chitinase by Penicillium ochrochloron MTCC 517 using agricultural residues. Int Biodeterior Biodegrad 91:9–17. https://doi.org/10.1016/j.ibiod.2014.03.003

    Article  CAS  Google Scholar 

  70. Dikshit R, Tallapragada P (2016) Statistical optimization of lovastatin and confirmation of nonexistence of citrinin under solid-state fermentation by Monascus sanguineus. J Food Drug Anal 24(2):433–440. https://doi.org/10.1016/j.jfda.2015.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gajdhane SB, Bhagwat PK, Dandge PD (2016) Statistical media optimization for enhanced production of α-galactosidase by a novel Rhizopus oryzae strain SUK. Biocatal Agric Biotechnol 8:301–309. https://doi.org/10.1016/j.bcab.2016.08.016

    Article  Google Scholar 

  72. Pareek N, Ghosh S, Singh RP, Vivekanand V (2014) Mustard oil cake as an inexpensive support for production of chitin deacetylase by Penicillium oxalicum SAEM-51 under solid-state fermentation. Biocatal Agric Biotechnol 3:212–217. https://doi.org/10.1016/j.bcab.2014.04.002

    Article  Google Scholar 

  73. Nidheesh T, Pal GK, Suresh PV (2015a) Chitooligomers preparation by chitosanase produced under solid state fermentation using shrimp by-products as substrate. Carbohydr Polym 121:1–9. https://doi.org/10.1016/j.carbpol.2014.12.017

    Article  CAS  PubMed  Google Scholar 

  74. (2016) Novaes CG, Bezerra MA, Da Silva EGP, Dos Santos AMP, Romão ILS, Santos Neto JH, A review of multivariate designs applied to the optimization of methods based on inductively coupled plasma optical emission spectrometry (ICP OES). Microchem J 128:331–346. https://doi.org/10.1016/j.microc.2016.05.015

  75. Ismail SA, Nout SA, Hassan AA (2022) Valorization of corn cobs for xylanase production by Aspergillus flavus AW1 and its application in the production of antioxidant oligosaccharides and removal of food stain. Biocatal Agric Biotechnol 41:102311. https://doi.org/10.1016/j.bcab.2022.102311

    Article  CAS  Google Scholar 

  76. Amadi OC, Egong EJ, Nwagu TN, Okpala G, Onwosi CO, Chukwu GC, Okolo BN, Agu RC, Moneke NA (2020) Process optimization for simultaneous production of cellulase, xylanase and ligninase by Saccharomyces cerevisiae SCPW 17 under solid state fermentation using Box-Behnken experimental design. Heliyon 6:e04566. https://doi.org/10.1016/j.heliyon.2020.e04566

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang H, Sang Q (2015) Production and extraction optimization of xylanase and -mannanase by Penicillium chrysogenum QML-2 and primary application in saccharification of corn cob. Biochem Eng J 97:101–110

    Article  CAS  Google Scholar 

  78. Carvalho EA, Nunes LV, LMS G, EGP d S, Franco M, Gross E, APT U, da Costa AM (2018) Peach-palm (Bactris gasipaes Kunth.) waste as substrate for xylanase production by Trichoderma stromaticum AM7. Chem Eng Commun 205:975–985. https://doi.org/10.1080/00986445.2018.1425208

    Article  CAS  Google Scholar 

  79. Souza LO, de Brito AR, RCF B, Santana NB, JLAA F, Oliveira EA, AGA F, MLO F, de Oliveira JR, Franco M (2018) Comparison of the biochemical properties between the xylanases of Thermomyces lanuginosus (Sigma®) and excreted by Penicillium roqueforti ATCC 10110 during the solid state fermentation of sugarcane bagasse. Biocatal Agric Biotechnol 16, 277:–284. https://doi.org/10.1016/j.bcab.2018.08.016

  80. JLAA F, Souza LO, AGA F, MLF O, de Oliveira JR, Franco M (2019) Optimization of the solid-state fermentation conditions and characterization of xylanase produced by Penicillium roqueforti ATCC 10110 using yellow mombin residue (Spondias mombin L.). Chem Eng Commun 207:31–42. https://doi.org/10.1080/00986445.2019.1572000

    Article  CAS  Google Scholar 

  81. Mondal S, Soren JP, Mondal J, Rakshit S, Halder SK, Mondal KC (2020) Contemporaneous synthesis of multiple carbohydrate debranching enzymes from newly isolated Aspergillus fumigatus SKF-2 under solid state fermentation: a unique enzyme mixture for proficient saccharification of plant bioresources. Ind Crops Prod 150:112409. https://doi.org/10.1016/j.indcrop.2020.112409

    Article  CAS  Google Scholar 

  82. Singhal A, Kumari N, Ghosh P, Singh Y, Garg S, Shah MP, Jha PK, Chauhan DK (2022) Optimizing cellulase production from Aspergillus flavus using response surface methodology and machine learning models. Eviron Technol Innov 27:102805. https://doi.org/10.1016/j.eti.2022.102805

    Article  CAS  Google Scholar 

  83. Qadir F Shariq M, Ahmed A, Sohail M (2018) Evaluation of a yeast co-culture for cellulase and xylanase production under solid state fermentation of sugarcane bagasse using multivariate approach. Ind Crops Prod. 123:407-415. https://doi.org/10.1016/j.indcrop.2018.07.021

  84. ASO I, Pandey A, Rao SS, Sukumaran RK (2017) Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresour Technol 242:265–271. https://doi.org/10.1016/j.biortech.2017.03.092

    Article  CAS  Google Scholar 

  85. De Brito AR, Reis NS, Silva TP, RCF B, APT U, de Assis SA, EGP d S, Oliveira EA, de Oliveira JR, Franco M (2017) Comparison between the univariate and multivariate analysis on the partial characterization of the endoglucanase produced in the solid state fermentation by Aspergillus oryzae ATCC 10124. Pre Biochem Biotechnol 47(10):977–985. https://doi.org/10.1080/10826068.2017.1365247

    Article  CAS  Google Scholar 

  86. Oliveira PC, de Brito AR, Pimentel AB, Soares GA, CSV P, Santana NN, EGP d S, AGA F, MLO F, Oliveira JR, Franco M (2019) Cocoa shell for the production of endoglucanase by Penicillium roqueforti ATCC 10110 in solid state fermentation and biochemical properties. Rev Mex Ing Quim 18(3):777–787. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2019v18n3/Oliveira

    Article  CAS  Google Scholar 

  87. Reis NS, Lessa OA, CSV P, Pereira NE, Soares GA, EGP S, Oliveira JR, Franco M (2020) Cocoa shell as a substrate for obtaining endoglucanase and xylanase from Aspergillus oryzae ATCC 10124. Acta Sci Technol 42:e48211. https://doi.org/10.4025/actascitechnol.v42i1.48211

    Article  Google Scholar 

  88. Hariharan S, Nambisan P (2013) Optimization of lignin peroxidase, manganese peroxidase, and lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 8:250–271

    Google Scholar 

  89. Wattanakitjanukul N, Sukkasem C, Chiersilp B, Boonsawang P (2020) Use of palm empty fruit bunches for the production of ligninolytic enzymes by Xylaria sp. in solid state fermentation. Waste Biomass Valor 11:3953–3964. https://doi.org/10.1007/s12649-019-00710-0

    Article  CAS  Google Scholar 

  90. Dilipkumar M, Rajamohan N, Rajasimman M (2013) Inulinase production in a packed bed reactor by solid state fermentation. Carbohydr Polym 96:196–199. https://doi.org/10.1016/j.carbpol.2013.03.078

    Article  CAS  PubMed  Google Scholar 

  91. Li H, Zhang R, Tang L, Zhang J, Mao Z (2015) Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chin J Chem Eng 23:227–233. https://doi.org/10.1016/j.cjche.2014.11.001

    Article  CAS  Google Scholar 

  92. GEA A, MMI H, Danial EM, Esawy MA (2014) Optimization of phytase production by Penicillium purpurogenum GE1 under solid state fermentation by using Box–Behnken design. Saudi J Biol Sci 21:81–88. https://doi.org/10.1016/j.sjbs.2013.06.004

    Article  CAS  Google Scholar 

  93. Shanmugaprakash M, Kirthika J, Ragupathy J, Nilanee K, Manickam A (2014) Statistical based media optimization and production of naringinase using Aspergillus brasiliensis 1344. Int J Biol Macromol 64:443–452. https://doi.org/10.1016/j.ijbiomac.2013.12.033

    Article  CAS  PubMed  Google Scholar 

  94. Nidheesh T, Kumar PG, Suresh PV (2015) Enzymatic degradation of chitosan and production of D-glucosamine by solid substrate fermentation of exo-b-D-glucosaminidase (exochitosanase) by Penicillium decumbens CFRNT15. Int Biodeterior Biodegrad 97:97–106. https://doi.org/10.1016/j.ibiod.2014.10.016

    Article  CAS  Google Scholar 

  95. Zheng L, Yu X, Wei C, Qiu L, Yu C, Xing Q, Fan Y, Deng Z (2020) Production and characterization of a novel alkaline protease from a newly isolated Neurospora crassa through solid-state fermentation. LWT - Food Sci Technol:122–108990. https://doi.org/10.1016/j.lwt.2019.108990

  96. Talhi I, Dehimat L, Jaouani A, Cherfia R, Berkani M, Almomani F, Vasseghian Y, Chaouche NK (2022) Optimization of thermostable proteases production under agro-wastes solid-state fermentation by a new thermophilic Mycothermus thermophilus isolated from a hydrothermal spring Hammam Debagh, Algeria. Chemosphere 286:131479. https://doi.org/10.1016/j.chemosphere.2021.131479

    Article  CAS  PubMed  Google Scholar 

  97. Doriya K, Kumar DS (2018) Optimization of solid substrate mixture and process parameters for the production of L-asparaginase and scale-up using tray bioreactor. Biocatal Agric Biotechnol 13:244–250. https://doi.org/10.1016/j.bcab.2018.01.004

    Article  Google Scholar 

  98. Naik B, Goyal SK, Tripathi AD, Kumar V (2019) Screening of agro-industrial waste and physical factors for the optimum production of pullulanase in solid-state fermentation from endophytic Aspergillus sp. Biocatal Agric Biotechnol 22:101423. https://doi.org/10.1016/j.bcab.2019.101423

    Article  Google Scholar 

  99. SLC F, WNL d S, Quintella CM, Neto BB, Bosque-Sendra JM (2004) Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta 63:1061–1067. https://doi.org/10.1016/j.talanta.2004.01.015

    Article  CAS  Google Scholar 

  100. Massart DL, BMG V, LMC B, De Jong S, Lewi PJ, Smeyers-Verbeke J (2003) Handbook of chemometrics and qualimetrics, part A. Elsevier, Amsterdam

    Google Scholar 

  101. Ferreira AN, Ribeiro DS, Santana RA, ACS F, LDG A, Lima EO, de Freitas JS, Valasques Junior GL (2017) Production of lipase from Penicillium sp. using waste oils and Nopalea cochenillifera. Chem Eng Commun. 204:1167–1173. https://doi.org/10.1080/00986445.2017.1347567

  102. Maktouf S, Moulis C, Kamoun A, Chaari F, Chaabouni SE, Remaud-Simeon M (2013) A laundry detergent compatible lichenase: statistical optimization for production under solid state fermentation on crude millet. Ind Crops Prod 43:349–354. https://doi.org/10.1016/j.indcrop.2012.06.055

    Article  CAS  Google Scholar 

  103. Bezerra MA, dos Santos QO, Santos AG, Novaes CG, SLC F, de Souza VS (2016) Simplex optimization: a tutorial approach and recent applications in analytical chemistry. Microchem J 124:45–54. https://doi.org/10.1016/j.microc.2015.07.023

    Article  CAS  Google Scholar 

  104. Chen R, Zhang Z, Feng C, Hu K, Li M, Li Y, Shimizu K, Chen N, Sugiura N (2010) Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As(V) removal from water solution. Micropor Mesopor Mater 131:115–121. https://doi.org/10.1016/j.micromeso.2009.12.010

    Article  CAS  Google Scholar 

  105. Ohara A, dos Santos JG, JAF A, PPM B, FFG D, Bagagli MP, Sato HH, RJS d C (2018) A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation. Food Sci Technol 38:131–137. https://doi.org/10.1590/1678-457X.17017

    Article  Google Scholar 

  106. FFG D, RJS d C, Ohara A, Nishide TG, Bagagli MP, Sato HH (2015) Simplex centroid mixture design to improve L-asparaginase production in solid-state fermentation using agroindustrial wastes. Biocatal Agric Biotechnol 4:528–534. https://doi.org/10.1016/j.bcab.2015.09.011

    Article  Google Scholar 

  107. RJS DC, Sato HH (2013) Synergistic effects of agroindustrial wastes on simultaneous production of protease and -amylase under solid state fermentation using a simplex centroid mixture design. Ind Crops Prod 49:813–821. https://doi.org/10.1016/j.indcrop.2013.07.002

    Article  CAS  Google Scholar 

  108. De Oliveira RL, da Silva MF, Converti A, Porto TS (2020) Production of β-fructofuranosidase with transfructosylating activity by Aspergillus tamarii URM4634 solid-state fermentation on agroindustrial by-products. Int J Biol Macromol 44:343–350. https://doi.org/10.1016/j.ijbiomac.2019.12.084

    Article  CAS  Google Scholar 

  109. Papadaki E, Kontogiannopoulos KN, Assimopoulou AN, Mantzouridou FT (2020) Feasibility of multi-hydrolytic enzymes production from optimized grape pomace residues and wheat bran mixture using Aspergillus niger in na integrated citric acid-enzymes production process. Bioresour Technol 309:123317. https://doi.org/10.1016/j.biortech.2020.123317

    Article  CAS  PubMed  Google Scholar 

  110. Sathish T, Prakasham RS (2013) Intensification of fructosyltransferases and fructo-oligosaccharides production in solid state fermentation by Aspergillus awamori GHRTS. Indian J Microbiol 55:337–342. https://doi.org/10.1007/s12088-013-0380-5

    Article  CAS  Google Scholar 

  111. Filipe D, Fernandes H, Castro C, Peres H, Oliva-Teles A, Belo I, Salgado JM (2019) Improved lignocellulolytic enzyme production and antioxidant extraction using solid-state fermentation of olive pomace mixed with winery waste. Biofuel Bioprod Biorefin 14:78–91. https://doi.org/10.1002/bbb.2073

    Article  CAS  Google Scholar 

  112. Nunes NS, Carneiro LL, LHS d M, de Carvalho MS, Pimentel AB, Silva TP, CSV P, IMC T, Santos PH, das Chagas TP, EGP d S, de Oliveira JR, Bilal M, Franco M (2020) Simplex-centroid design and artificial neural network-genetic algorithm for the optimization of exoglucanase production by Penicillium Roqueforti ATCC 10110 through solid-state fermentation using a blend of agroindustrial wastes. Bioenerg Res 13:1130–1143. https://doi.org/10.1007/s12155-020-10157-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Coordination for the Improvement of Higher Education Personnel (CAPES) and the National Council for Scientific and Technological Development (CNPq, Brazil) for financial support (308300/2021-1).

Availability of data and material

Not applicable

Code availability

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Franco.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Menezes, L.H.S., Oliveira, P.C., do Espírito Santo, E.L. et al. Solid-State Fermentation as a Green Technology for Biomass Valorization: Optimization Techniques for Bioprocess—An Overview. Bioenerg. Res. 17, 42–58 (2024). https://doi.org/10.1007/s12155-023-10670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10670-y

Keywords

Navigation