Skip to main content

Advertisement

Log in

Biotechnologies to Improve Sugarcane Productivity in a Climate Change Scenario

BioEnergy Research Aims and scope Submit manuscript

Abstract

Sugarcane plays a central role in sugar and ethanol production. Ethanol from sugarcane is considered sustainable since lignocellulosic residues can increase crop productivity without altering planted areas, providing a valuable portion of the compensation for carbon dioxide emissions caused by fossil fuels. In this way, developing biotechnologies applied to increase sugarcane productivity is essential, especially in coping with stressful environments, which may cause a loss of productivity. This review first scrutinizes the literature to analyze the international collaborations among researchers working with sugarcane biotechnology, driven by sugarcane-producing countries, to understand its biochemical and molecular physiology associated with local environmental features. We then examine the literature to highlight some scientific improvements related to genetics and genomics and the use of omics tools for understanding sugarcane physiology. These new technologies have helped improve sugarcane’s physiological performance, addressing increased productivity without expanding the planting area, to important traits for resistance to stresses associated with global climate change. However, one of the most critical challenges remains the sequencing of the sugarcane genome, which still needs to be improved for precise genetic engineering strategies. We conclude that systems biology approaches integrating large amounts of data are essential. We need integration capable of affording specific modifications in the sugarcane genome (e.g., using CRISPR-Cas9 technology) to control plant behavior precisely. Coupled with modeling tools (e.g., Integration Assessment Modeling), this approach could provide the necessary precision control of designed plants to cope with a changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. UNFCCC UNFC on CC (2008) Kyoto protocol reference manual: on accounting and assigned amount. https://unfccc.int/resource/docs/publications/08_unfccc_kp_ref_manual.pdf

  2. IPCC (2014) Climate change 2014: mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, NY

    Google Scholar 

  3. IPC (2018) Special report: Global Warming of 1.5oC. Intergovernmental Panel on Climate Changes https://www.ipcc.ch/sr15/

  4. Sekar M, Praveen Kumar TR, Selva Ganesh Kumar M et al (2021) Techno-economic review on short-term anthropogenic emissions of air pollutants and particulate matter. Fuel 305:121544. https://doi.org/10.1016/j.fuel.2021.121544

    Article  CAS  Google Scholar 

  5. Mysiak J, Surminski S, Thieken A et al (2016) Brief communication: Sendai framework for disaster risk reduction – success or warning sign for Paris? Nat Hazard 16:2189–2193. https://doi.org/10.5194/nhess-16-2189-2016

    Article  Google Scholar 

  6. Matsuoka S, Ferro J, Arruda P (2009) The Brazilian experience of sugarcane ethanol industry. In Vitro Cellular Dev Biol - Plant 45:372–381. https://doi.org/10.1007/s11627-009-9220-z

    Article  Google Scholar 

  7. De Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35. https://doi.org/10.1007/s12155-013-9366-8

    Article  CAS  Google Scholar 

  8. Bencoova B, Grosos R, Gomory M, Bacova K (2021). U of biogas plants on a national and international scale. AMSlovacaV 26 (1) 139–148 (2021) Use of biogas plants on a national and international scale. Acta Montanistica Slovaca 139–148. https://doi.org/10.46544/AMS.v26i1.12

  9. Maroušek J, Gavurová B, Strunecký O et al (2023) Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel 344:128056. https://doi.org/10.1016/j.fuel.2023.128056

    Article  CAS  Google Scholar 

  10. Vochozka M, Horak J, Krulický T, Pardal P (2020) Predicting future Brent oil price on global markets. Acta Montanistica Slovaca 25:375–392. https://doi.org/10.46544/AMS.v25i3.10

    Article  Google Scholar 

  11. Vochozka M, Rowland Z, Suler P, Marousek J (2020) The influence of the international price of oil on the value of the EUR/USD exchange rate. J Compet 12:167–190. https://doi.org/10.7441/joc.2020.02.10

    Article  Google Scholar 

  12. FAO (2021) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data

  13. Maroušek J, Maroušková A, Gavurová B et al (2023) Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresour Technol 374:128802. https://doi.org/10.1016/j.biortech.2023.128802

    Article  CAS  PubMed  Google Scholar 

  14. Solomon S (2011) The Indian sugar industry: an overview. Sugar Tech 13:255–265

    Article  CAS  Google Scholar 

  15. Landry T, Aradhey A (2018) Grain report on India sugarcane annual. IN8047. Washington, DC: USDA Foreign Agricultural Service. https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Sugar%20Annual_New%20Delhi_India_4-19-2018.pdf

  16. FAO (2023) Food and Agriculture Organization of the United Nations Crops. In: http://www.fao.org/faostat/en/#data/QC/visualize

  17. López-Ortega MG, Guadalajara Y, Junqueira TL et al (2021) Sustainability analysis of bioethanol production in Mexico by a retrofitted sugarcane industry based on the Brazilian expertise. Energy 232:121056. https://doi.org/10.1016/j.energy.2021.121056

    Article  CAS  Google Scholar 

  18. Yadav S, Jackson P, Wei X et al (2020) Accelerating genetic gain in sugarcane breeding using genomic selection. Agronomy 10:585. https://doi.org/10.3390/agronomy10040585

    Article  CAS  Google Scholar 

  19. Ming R, Moore PH, Wu K-K et al (2010) Sugarcane improvement through breeding and biotechnology. Plant Breeding Reviews. John Wiley & Sons Inc, Oxford, UK, pp 15–118

    Google Scholar 

  20. Todd J, Glaz B, Burner D, Kimbeng C (2015) Historical use of cultivars as parents in Florida and Louisiana Sugarcane Breeding Programs. Int Sch Res Notices 2015:1–9. https://doi.org/10.1155/2015/257417

    Article  CAS  Google Scholar 

  21. Cursi DE, Hoffmann HP, Barbosa GVS et al (2022) History and current status of sugarcane breeding, germplasm development and molecular genetics in Brazil. Sugar Tech 24:112–133. https://doi.org/10.1007/s12355-021-00951-1

    Article  CAS  Google Scholar 

  22. Berner PGM, Vieira SR, Lima E, dos Anjos LHC (2007) Variabilidade espacial de propriedades físicas e químicas de um Cambissolo sob dois sistemas de manejo de cana-de-açúcar. Rev Bras Cienc Solo 31:837–844. https://doi.org/10.1590/S0100-06832007000500001

    Article  CAS  Google Scholar 

  23. Jaiswal D, de Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Chang 7:788–792. https://doi.org/10.1038/nclimate3410

    Article  Google Scholar 

  24. de Carvalho JRP, da Silveira PM, Vieira SR (2002) Geoestatística na determinação da variabilidade espacial de características químicas do solo sob diferentes preparos. Pesqui Agropecu Bras 37:1151–1159. https://doi.org/10.1590/S0100-204X2002000800013

    Article  Google Scholar 

  25. CONAB (2020) Companhia Nacional de Abastecimento. . In: https://www.conab.gov.br

  26. Adami M, Rudorff BFT, Freitas RM et al (2012) Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in Brazil. Sustainability 4:574–585. https://doi.org/10.3390/su4040574

    Article  Google Scholar 

  27. Cherubin MR, Karlen DL, Franco ALC et al (2016) A Soil Management Assessment Framework (SMAF) Evaluation of Brazilian Sugarcane Expansion on Soil Quality. Soil Sci Soc Am J 80:215–226. https://doi.org/10.2136/sssaj2015.09.0328

    Article  CAS  Google Scholar 

  28. Maroušek J, Minofar B, Maroušková A et al (2023) Environmental and economic advantages of production and application of digestate biochar. Environ Technol Innov 30:103109. https://doi.org/10.1016/j.eti.2023.103109

    Article  CAS  Google Scholar 

  29. Fu Z, Niu S, Dukes JS (2015) What have we learned from global change manipulative experiments in China? A meta-analysis. Sci Rep 5:1–11. https://doi.org/10.1038/srep12344

    Article  Google Scholar 

  30. Zornoza R, Acosta JA, Bastida F et al (2015) Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. SOIL 1:173–185. https://doi.org/10.5194/soil-1-173-2015

    Article  Google Scholar 

  31. Carvalho JLN, Nogueirol RC, Menandro LMS et al (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:1181–1195. https://doi.org/10.1111/gcbb.12410

    Article  CAS  Google Scholar 

  32. de Menezes AB, Mueller C, Clipson N, Doyle E (2016) The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment. MICROBIOLOGY-SGM 162:1572–1582. https://doi.org/10.1099/mic.0.000341

    Article  CAS  Google Scholar 

  33. Rosa GS (2015) Produtividade na agroindústria brasileira 39:49–57

    Google Scholar 

  34. Chaya W, Bunnag B, Gheewala SH (2019) Adoption, cost and livelihood impact of machinery services used in small-scale sugarcane production in Thailand. Sugar Tech 21:543–556. https://doi.org/10.1007/s12355-018-0651-x

    Article  CAS  Google Scholar 

  35. Loganandhan N, Gujja B, Vinod Goud V, Natarajan US (2013) Sustainable Sugarcane Initiative (SSI): a methodology of ‘more with less.’ Sugar Tech 15:98–102. https://doi.org/10.1007/s12355-012-0180-y

    Article  Google Scholar 

  36. Geetha P, Tayade AS, Chandrasekar CA et al (2019) Agronomic response, weed smothering efficiency and economic feasibility of sugarcane and legume intercropping system in tropical India. Sugar Tech 21:838–842. https://doi.org/10.1007/s12355-018-0689-9

    Article  CAS  Google Scholar 

  37. Narayan S, Bhattacharya P (2019) Relative export competitiveness of agricultural commodities and its determinants: some evidence from India. World Dev 117:29–47. https://doi.org/10.1016/j.worlddev.2018.12.013

    Article  Google Scholar 

  38. Rudorff B, Batista G (1990) Yield estimation of sugarcane based on agrometeorological-spectral models. Remote Sens Environ 33:183–192. https://doi.org/10.1016/0034-4257(90)90029-L

    Article  Google Scholar 

  39. Marin FR, Jones JW, Royce F et al (2011) Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane. Agron J 103:304–315. https://doi.org/10.2134/agronj2010.0302

    Article  Google Scholar 

  40. Atherton J, Nichol CJ, Porcar-Castell A (2016) Using spectral chlorophyll fluorescence and the photochemical reflectance index to predict physiological dynamics. Remote Sens Environ 176:17–30. https://doi.org/10.1016/j.rse.2015.12.036

    Article  Google Scholar 

  41. Miocque J (1999) Avaliação de crescimento e de produtividade de matéria verde da cana-de-açúcar na região de Araraquara-SP 17:45–47

    Google Scholar 

  42. Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50. https://doi.org/10.1038/nature10322

    Article  CAS  PubMed  Google Scholar 

  43. de Souza MF, do Amaral LR, de Oliveira SRM et al (2020) Spectral differentiation of sugarcane from weeds. Biosyst Eng 190:41–46. https://doi.org/10.1016/j.biosystemseng.2019.11.023

    Article  Google Scholar 

  44. Blackshaw RE, Molnar LJ, Chevalier DF, Lindwall CW (1998) Factors affecting the operation of the weed-sensing Detectspray system. Weed Sci 46:127–131. https://doi.org/10.1017/S0043174500090287

    Article  CAS  Google Scholar 

  45. Sui R, Thomasson JA, Hanks J, Wooten J (2008) Ground-based sensing system for weed mapping in cotton. Comput Electron Agric 60:31–38. https://doi.org/10.1016/j.compag.2007.06.002

    Article  Google Scholar 

  46. Judice WE, Griffin JL, Jones CA et al (2006) Weed control and economics using reduced tillage programs in sugarcane. Weed Technol 20:319–325. https://doi.org/10.1614/WT-05-094R.1

    Article  Google Scholar 

  47. Kutter T, Tiemann S, Siebert R, Fountas S (2011) The role of communication and co-operation in the adoption of precision farming. Precis Agric 12:2–17. https://doi.org/10.1007/s11119-009-9150-0

    Article  Google Scholar 

  48. Pritchard A (1969) Statistical bibliography or bibliometrics? Journal of Documentation 25:348–349

    Google Scholar 

  49. Aria M, Cuccurullo C (2017) bibliometrix : an R-tool for comprehensive science mapping analysis. J Informetr 11:959–975. https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  50. Zupic I, Čater T (2015) Bibliometric methods in management and organization. Organ Res Methods 18:429–472. https://doi.org/10.1177/1094428114562629

    Article  Google Scholar 

  51. Moreira JR, Goldemberg J (1999) The alcohol program. Energy Policy 27:229–245. https://doi.org/10.1016/S0301-4215(99)00005-1

    Article  Google Scholar 

  52. IPCC. Intergovernmental Panel on Climate Changes (2005) Carbon dioxide capture and storage. Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos and Leo Meyer (Eds.). Cambridge University Press, UK 481

  53. Fortirer J da S, Grandis A, de Toledo Castanho C, Buckeridge MS (2020) Importance of meta-analysis in studies involving plant responses to climate change in Brazil. 221–234

  54. Stávková J, Maroušek J (2021) Novel sorbent shows promising financial results on P recovery from sludge water. Chemosphere 276:130097. https://doi.org/10.1016/j.chemosphere.2021.130097

    Article  CAS  PubMed  Google Scholar 

  55. Guo Y, Gou X, Xu Z, Skare M (2022) Carbon pricing mechanism for the energy industry: a bibliometric study of optimal pricing policies. Acta Montanistica Slovaca 27:49–69

    CAS  Google Scholar 

  56. Editorial, (2008) Editorial. Bioenergy Res 1:1–1. https://doi.org/10.1007/s12155-008-9009-7

    Article  Google Scholar 

  57. Long S (2009) First to know the nature of bioenergy. GCB Bioenergy 1:1–1. https://doi.org/10.1111/j.1757-1707.2009.01006.x

    Article  Google Scholar 

  58. SCOPUS (2021) https://www.scopus.com

  59. Maroušek J, Gavurová B (2022) Recovering phosphorous from biogas fermentation residues indicates promising economic results. Chemosphere 291:133008. https://doi.org/10.1016/j.chemosphere.2021.133008

    Article  CAS  PubMed  Google Scholar 

  60. Macedo IC, Cortez LAB (2005) O processamento industrial da cana de açúcar no Brasil. In: Uso da biomassa para produção de energia na indústria brasileira. 247–248

  61. Julio AAV, Milessi TS, Maya DMY et al (2023) Assessment of the sustainability and economic potential of hydrotreated vegetable oils to complement diesel and biodiesel blends in Brazil. Biofuels, Bioprod Biorefin 17:312–323. https://doi.org/10.1002/bbb.2378

    Article  CAS  Google Scholar 

  62. Phillips E (2021) Biobutanol production and advancement. In: Bioenergy Research. Wiley, 279–289

  63. Gonçalves BJA, de Figueiredo KCS (2022) Developments in downstream butanol separation from acetone, butanol, and ethanol fermentation. Chem Eng Technol 45:1811–1825. https://doi.org/10.1002/ceat.202200241

    Article  CAS  Google Scholar 

  64. Maroušek J, Kwan JTH (2013) Use of pressure manifestations following the water plasma expansion for phytomass disintegration. Water Sci Technol 67:1695–1700. https://doi.org/10.2166/wst.2013.041

    Article  CAS  PubMed  Google Scholar 

  65. Castioni GA, Cherubin MR, Menandro LMS et al (2018) Soil physical quality response to sugarcane straw removal in Brazil: a multi-approach assessment. Soil Tillage Res 184:301–309. https://doi.org/10.1016/j.still.2018.08.007

    Article  Google Scholar 

  66. Gonzaga LC, do Zotelli LC, de Castro SGQ et al (2019) Implications of sugarcane straw removal for soil greenhouse gas emissions in São Paulo State, Brazil. Bioenergy Res 12:843–857. https://doi.org/10.1007/s12155-019-10006-9

    Article  CAS  Google Scholar 

  67. Pagliuso D, Grandis A, de Sousa CR, et al (2021) The effect of sugarcane straw aging in the field on cell wall composition. Front Plant Sci 12:. https://doi.org/10.3389/fpls.2021.652168

  68. Soccol CR, de Vandenberghe LPS, Medeiros ABP et al (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825. https://doi.org/10.1016/j.biortech.2009.11.067

    Article  CAS  PubMed  Google Scholar 

  69. Chandel AK, Albarelli JQ, Santos DT et al (2019) Comparative analysis of key technologies for cellulosic ethanol production from Brazilian sugarcane bagasse at a commercial scale. Biofuels, Bioprod Biorefin 13:994–1014. https://doi.org/10.1002/bbb.1990

    Article  CAS  Google Scholar 

  70. Information Council on Biotechnology C de informações sobre biotecnologia (2021) Guia da cana-de-açúcar: avanço científico beneficia o país. Brasília. In: https://brasil.campusvirtualsp.org/taxonomy/term/9453

  71. Bonassa G, Schneider LT, Frigo KDA, et al (2015) Subprodutos Gerados na Produção de Bioetanol: Bagaço, Torta de Filtro, água de Lavagem e Palhagem1. Revista Brasileira de Energias Renováveis 4:. https://doi.org/10.5380/rber.v4i3.44075

  72. Rípoli TCC, Molina WF Jr, Rípoli MLC (2000) Energy potential of sugar cane biomass in Brazil. Sci Agric 57:677–681. https://doi.org/10.1590/S0103-90162000000400013

    Article  Google Scholar 

  73. Dotaniya ML, Datta SC, Biswas DR et al (2016) Use of sugarcane industrial by-products for improving sugarcane productivity and soil health. Int J Recycl Org Waste Agric 5:185–194. https://doi.org/10.1007/s40093-016-0132-8

    Article  Google Scholar 

  74. Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476:. https://doi.org/10.1098/rspa.2020.0351

  75. Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097. https://doi.org/10.1016/j.enpol.2008.02.028

    Article  Google Scholar 

  76. de Almeida MA, Colombo R (2021) Production chain of first-generation sugarcane bioethanol: characterization and value-added application of wastes. Bioenergy Res. https://doi.org/10.1007/s12155-021-10301-4

    Article  Google Scholar 

  77. Griffin WM, Saville BA, MacLean HL (2016) Ethanol use in the United States: status, threats and the potential future. In: Global Bioethanol. Elsevier, 34–62

  78. Pongpat P, Gheewala SH, Silalertruksa T (2017) An assessment of harvesting practices of sugarcane in the central region of Thailand. J Clean Prod 142:1138–1147. https://doi.org/10.1016/j.jclepro.2016.07.178

    Article  Google Scholar 

  79. Negrão DR, Grandis A, Buckeridge MS et al (2021) Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: a review. Renew Sustain Energy Rev 148:111268. https://doi.org/10.1016/j.rser.2021.111268

    Article  CAS  Google Scholar 

  80. Kumar A, Anand R (2019) Progress in biofuel generation and its application in fuel cell. In: Advanced Biofuels. Elsevier, 371–403

  81. Negrete JC (2019) Law for the prohibition of the burning of sugar cane in Mexico. 3:171–174

  82. Esteban DAA, de Souza ZM, da Silva RB et al (2020) Impact of permanent traffic lanes on the soil physical and mechanical properties in mechanized sugarcane fields with the use of automatic steering. Geoderma 362:114097. https://doi.org/10.1016/j.geoderma.2019.114097

    Article  Google Scholar 

  83. Serafim LGF, Stolf R, Silva JR et al (2013) Influência do plantio mecanizado no índice de brotação da cana de açúcar 31:22–25

    Google Scholar 

  84. Cortez JW, Missio C, Barreto AKG et al (2016) Quality os sugarcane mechanized planting. Engenharia Agrícola 36:1136–1144. https://doi.org/10.1590/1809-4430-eng.agric.v36n6p1136-1144/2016

    Article  Google Scholar 

  85. da Mello RC, Harris H (2003) Desempenho de cortadores de base para colhedoras de cana-de-açúcar com lâminas serrilhadas e inclinadas. Revista Brasileira de Engenharia Agrícola e Ambiental 7:355–358. https://doi.org/10.1590/S1415-43662003000200029

    Article  Google Scholar 

  86. Martins MB, Testa JVP, Drudi FS, et al (2019) Interference of speed at cutting height and damage to rootstock in mechanical harvesting of sugarcane. Aust J Crop Sci 1305–1308. https://doi.org/10.21475/ajcs.19.13.08.p1713

  87. Manhães CMC, Ricardo FG, Delorme CJ, et al (2014) . Perdas quantitativas e danos às soqueiras na colheita de cana-de-açúcar no Norte Fluminense . Brazilian Sugar Exports https://www.gov.br/agricultura/pt-br

  88. Maroušek J, Maroušková A, Periakaruppan R et al (2022) Silica nanoparticles from coir pith synthesized by acidic sol-gel method improve germination economics. Polymers (Basel) 14:266. https://doi.org/10.3390/polym14020266

    Article  CAS  PubMed  Google Scholar 

  89. Carvalho-Netto OV, Bressiani JA, Soriano HL et al (2014) The potential of the energy cane as the main biomass crop for the cellulosic industry. Chem Biol Technol Agric 1:20. https://doi.org/10.1186/s40538-014-0020-2

    Article  CAS  Google Scholar 

  90. Maroušek J, Kolář L, Strunecký O et al (2020) Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. J Clean Prod 272:123015. https://doi.org/10.1016/j.jclepro.2020.123015

    Article  CAS  Google Scholar 

  91. de Souza Barbosa GV, dos Santos JM, Diniz CA, et al (2020) Energy cane breeding. In: Sugarcane Biorefinery, Technology and Perspectives. Elsevier, 103–116

  92. Hill J, Nelson E, Tilman D et al (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210. https://doi.org/10.1073/pnas.0604600103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Johnson JMF, Coleman R, Gesch A et al (2007) Biomass-bioenergy crops in the United States: a changing paradigm 1:1–28

    Google Scholar 

  94. Gonzalez-Hernandez JL, Sarath G, Stein JM et al (2009) A multiple species approach to biomass production from native herbaceous perennial feedstocks. In Vitro Cell Dev Biol - Plant 45:267–281. https://doi.org/10.1007/s11627-009-9215-9

    Article  CAS  Google Scholar 

  95. de Abreu LGF, Grassi MCB, de Carvalho LM et al (2020) Energy cane vs sugarcane: Watching the race in plant development. Ind Crops Prod 156:112868. https://doi.org/10.1016/j.indcrop.2020.112868

    Article  CAS  Google Scholar 

  96. da Aude MIS (1993) Estádios de desenvolvimento de cana-de-açúcar e suas relações com a produtividade. Ciência Rural 23:241–248. https://doi.org/10.1590/S0103-84781993000200022

    Article  Google Scholar 

  97. Garcia C, Andreasen C (2017) Improving utilization of sugarcane by replacing ordinary propagation material with small chips of sugarcane planted in paper pots. World Acad. Sci. Eng. Technol. Int. J. Biotechnol. Bioeng. World Acad Sci Eng Technol Int J Biotechnol Bioeng 11:11–14

    Google Scholar 

  98. da Silva JC, Neto AR, Severiano EDC et al (2018) Sugarcane bud chip encapsulation for ex vitro synthetic seed formation. J Agric Sci 10:104. https://doi.org/10.5539/jas.v10n4p104

    Article  Google Scholar 

  99. Landell MG, Campana MP, Figueiredo P, et al (2012) Sistema de multiplicação de cana-de-açúcar com uso de mudas pré-brotadas (MPB),oriundas de gemas individualizadas. Instituto Agronômico de Campinas 17:

  100. May A, Ramos NP, dos Santos MDS et al (2018) Pre-sprouted seedlings production methods through buds or mini-stems: emergence and initial development of sugarcane cultivars. Científica 46:403. https://doi.org/10.15361/1984-5529.2018v46n4p403-411

    Article  Google Scholar 

  101. de Amorim FR, Patino MTO, Bartmeyer PM, Santos DFL (2020) Productivity and Profitability of the Sugarcane Production in the State of Sao Paulo, Brazil. Sugar Tech 22:596–604. https://doi.org/10.1007/s12355-020-00813-2

    Article  CAS  Google Scholar 

  102. Demattê JAM, Demattê JLI, Alves ER et al (2014) Precision agriculture for sugarcane management: a strategy applied for Brazilian conditions. Acta Sci Agron 36:111. https://doi.org/10.4025/actasciagron.v36i1.17664

    Article  Google Scholar 

  103. Altpeter F, Oraby H (2010) Sugarcane. 453–472

  104. Tuteja N, Sarvajeet SG, Antonio FT, Renu T (2012) Improving crop resistance to abiotic stress. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, Germany

    Book  Google Scholar 

  105. Shrivastava AK, Srivastava S (2012) Sugarcane: physiological and molecular approaches for improving abiotic stress tolerance and sustaining crop productivity. Improving Crop Resistance to Abiotic Stress. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 885–921

    Chapter  Google Scholar 

  106. Landell MD, Bressiani JA (2008) Melhoramento genético, caracterização e manejo varietal. Cana-de-açúcar. Cana-de-açúcar Campinas: Instituto Agronômico 101–155

  107. de Morais LK, de Aguiar MS, de Albuquerque e Silva P, et al (2015) Breeding of Sugarcane. 29–42

  108. Cheavegatti-Gianotto A, WS, Oliveira FCC, Lopes A, et al (2019) Development of CTC20BT, the first genetically modified sugarcane commercially available in the world . 30:1272–1279

  109. Waclawovsky AJ, Sato PM, Lembke CG et al (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276. https://doi.org/10.1111/j.1467-7652.2009.00491.x

    Article  CAS  PubMed  Google Scholar 

  110. Meena MR, Appunu C, Arun Kumar R, et al (2022) Recent advances in sugarcane genomics, physiology, and phenomics for superior agronomic traits. Front Genet 13:. https://doi.org/10.3389/fgene.2022.854936

  111. Vettore AL (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735. https://doi.org/10.1101/gr.1532103

    Article  PubMed  PubMed Central  Google Scholar 

  112. Souza GM, Berges H, Bocs S et al (2011) The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol 4:145–156. https://doi.org/10.1007/s12042-011-9079-0

    Article  CAS  Google Scholar 

  113. Griggs D, Stafford-Smith M, Gaffney O et al (2013) Sustainable development goals for people and planet. Nature 495:305–307. https://doi.org/10.1038/495305a

    Article  CAS  PubMed  Google Scholar 

  114. Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57. https://doi.org/10.1093/jxb/eru429

    Article  CAS  PubMed  Google Scholar 

  115. Jung JH, Altpeter F (2016) TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol 92:131–142. https://doi.org/10.1007/s11103-016-0499-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oz MT, Altpeter A, Karan R, et al (2021) CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed 3:. https://doi.org/10.3389/fgeed.2021.673566

  117. Eid A, Mohan C, Sanchez S, et al (2021) Multiallelic, targeted mutagenesis of magnesium chelatase with CRISPR/Cas9 provides a rapidly scorable phenotype in highly polyploid sugarcane. Front Genome Ed 3:. https://doi.org/10.3389/fgeed.2021.654996

  118. Scortecci CK, Creste S, Calsa T, et al (2012) Challenges, opportunities and recent advances in sugarcane breeding. In: Plant Breeding. InTech

  119. Li Y, Ding Y, Li D, Miao Z (2018) Automatic carbon dioxide enrichment strategies in the greenhouse: A review. Biosyst Eng 171:101–119. https://doi.org/10.1016/j.biosystemseng.2018.04.018

    Article  Google Scholar 

  120. Aono AH, Costa EA, Rody HVS et al (2020) Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance. Sci Rep 10:20057. https://doi.org/10.1038/s41598-020-77063-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mollinari M, Garcia AAF (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden Markov models. G3 Genes Genomes Genetics 9:3297–3314. https://doi.org/10.1534/g3.119.400378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Balsalobre TWA, da Silva PG, Margarido GRA et al (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18:72. https://doi.org/10.1186/s12864-016-3383-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Grandke F, Ranganathan S, van Bers N et al (2017) PERGOLA: fast and deterministic linkage mapping of polyploids. BMC Bioinformatics 18:12. https://doi.org/10.1186/s12859-016-1416-8

    Article  PubMed  PubMed Central  Google Scholar 

  124. Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975. https://doi.org/10.1016/j.tplants.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  125. Hadasch S, Simko I, Hayes RJ, et al (2016) Comparing the predictive abilities of phenotypic and marker‐assisted selection methods in a biparental lettuce population. Plant Genome 9:. https://doi.org/10.3835/plantgenome2015.03.0014

  126. Heffner EL, Sorrells ME, Jannink J-L (2009) Genomic selection for crop improvement. Crop Sci 49:1–12. https://doi.org/10.2135/cropsci2008.08.0512

    Article  CAS  Google Scholar 

  127. Park S, Jackson PA, Berding N, Inman-Bamber B (2007) Conventional breeding practices within the Australian sugarcane breeding program. In: Proceedings of the Australian Society of Sugar Cane Technologists Conference. Cairns, 113–121

  128. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829. https://doi.org/10.1093/genetics/157.4.1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li A-M, Liao F, Wang M et al (2023) Transcriptomic and proteomic landscape of sugarcane response to biotic and abiotic stressors. Int J Mol Sci 24:8913. https://doi.org/10.3390/ijms24108913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mustafa G, Joyia FA, Anwar S, et al (2018) Biotechnological interventions for the improvement of sugarcane crop and sugar production. In: Sugarcane - Technology and Research. InTech

  131. Shearman JR, Sonthirod C, Naktang C et al (2016) The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads. Sci Rep 6:31533. https://doi.org/10.1038/srep31533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. SUCEST-FUN Database (2015) Sugarcane Functional Genomics Database. http://sucest-fun.org

  133. Calderan-Rodrigues MJ, Jamet E, Bonassi MBCR et al (2014) Cell wall proteomics of sugarcane cell suspension cultures. Proteomics 14:738–749. https://doi.org/10.1002/pmic.201300132

    Article  CAS  PubMed  Google Scholar 

  134. Robiati Telles B, de Souza Carvalho FM, da Silva VJ et al (2019) Prolonged water deficit reveals new profile of sugarcane gene expression and metabolic pathway related to tolerance. Sugar Tech 21:451–461. https://doi.org/10.1007/s12355-018-0674-3

    Article  CAS  Google Scholar 

  135. Calderan-Rodrigues MJ, Jamet E, Douché T et al (2016) Cell wall proteome of sugarcane stems: comparison of a destructive and a non-destructive extraction method showed differences in glycoside hydrolases and peroxidases. BMC Plant Biol 16:14. https://doi.org/10.1186/s12870-015-0677-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ferreira TH, Gentile A, Vilela RD et al (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PLoS ONE 7:e46703. https://doi.org/10.1371/journal.pone.0046703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hoang NV, Furtado A, McQualter RB, Henry RJ (2015) Next generation sequencing of total DNA from sugarcane provides no evidence for chloroplast heteroplasmy. New Negat Plant Sci 1–2:33–45. https://doi.org/10.1016/j.neps.2015.10.001

    Article  Google Scholar 

  138. Rossi M, Araujo PG, Paulet F et al (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Genet Genomics 269:406–419. https://doi.org/10.1007/s00438-003-0849-8

    Article  CAS  PubMed  Google Scholar 

  139. Tomkins JP, Yu Y, Miller-Smith H et al (1999) A bacterial artificial chromosome library for sugarcane. Theor Appl Genet 99:419–424. https://doi.org/10.1007/s001220051252

    Article  CAS  PubMed  Google Scholar 

  140. Figueira TR e S, Okura V, Rodrigues da Silva F, et al (2012) A BAC library of the SP80–3280 sugarcane variety (saccharum sp) and its inferred microsynteny with the sorghum genome. BMC Res Notes 5:185. https://doi.org/10.1186/1756-0500-5-185

  141. SoGI (2017) Saccharum officinarum Gene Indices. hftp://occams.dfci.harvard.edu/pub/bio/tgi/data/Saccharum_officinarum/

  142. Wu J, Kronzucker HJ, Shi W (2018) Dynamic analysis of the impact of free-air CO2 enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice. Funct Plant Biol 45:696–704. https://doi.org/10.1071/FP17278

    Article  CAS  PubMed  Google Scholar 

  143. Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031. https://doi.org/10.1007/s00216-007-1486-6

    Article  CAS  PubMed  Google Scholar 

  144. Vidigal PMP, Coelho ASG, Novaes E, et al (2016) Complete chloroplast genome sequence and annotation of the saccharum hybrid cultivar RB867515. Genome Announc 4:. https://doi.org/10.1128/genomeA.01157-16

  145. Calsa Júnior T, Carraro DM, Benatti MR et al (2004) Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46:366–373. https://doi.org/10.1007/s00294-004-0542-4

    Article  CAS  PubMed  Google Scholar 

  146. Lunn JE (2008) Sucrose Metabolism. In: eLS. Wiley

  147. Verma I, Roopendra K, Sharma A et al (2019) Expression analysis of genes associated with sucrose accumulation and its effect on source–sink relationship in high sucrose accumulating early maturing sugarcane variety. Physiol Mol Biol Plants 25:207–220. https://doi.org/10.1007/s12298-018-0627-z

    Article  CAS  PubMed  Google Scholar 

  148. Asano T (2004) Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93–99. https://doi.org/10.1093/dnares/11.2.93

    Article  CAS  PubMed  Google Scholar 

  149. Zhang M, Govindaraju M (2018) Sugarcane production in China. In: Sugarcane - Technology and Research. InTech

  150. Manimekalai R, Suresh G, Singaravelu B (2022) Sugarcane transcriptomics in response to abiotic and biotic stresses: a review. Sugar Tech 24:1295–1318. https://doi.org/10.1007/s12355-021-01098-9

    Article  CAS  Google Scholar 

  151. Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Biol 47:509–540

    Article  CAS  Google Scholar 

  152. Grandis A, Leite DCC, Tavares EQP et al (2019) Cell wall hydrolases act in concert during aerenchyma development in sugarcane roots. Ann Bot 124:1067–1089. https://doi.org/10.1093/aob/mcz099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Belesini AA, Carvalho FMS, Telles BR, et al (2017) De novo transcriptome assembly of sugarcane leaves submitted to prolonged water-deficit stress. Genetics and Molecular Research 16:. https://doi.org/10.4238/gmr16028845

  154. Garcia AAF, Kido EA, Meza AN et al (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314. https://doi.org/10.1007/s00122-005-0129-6

    Article  CAS  PubMed  Google Scholar 

  155. Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801. https://doi.org/10.1007/s00122-004-1813-7

    Article  CAS  PubMed  Google Scholar 

  156. Gentile A, Ferreira TH, Mattos RS, et al (2013) De novo transcriptome assembly of sugarcane leaves submitted to prolonged water-deficit stress. Embrapa Informática Agropecuária-Artigo em periódico indexado (ALICE).cio Endres. Effects of drought on the microtranscriptome of field-grown sugarcane plants. Embrapa Informática Agropecuária-Artigo em periódico indexado (ALICE) Endres 237:783–798

  157. Garsmeur O, Droc G, Antonise R et al (2018) A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun 9:2638. https://doi.org/10.1038/s41467-018-05051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Souza GM, Van Sluys M-A, Lembke CG, et al (2019) Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world’s leading biomass crop. Gigascience 8:. https://doi.org/10.1093/gigascience/giz129

  159. Huang X, Liang Y, Zhang B, et al (2021) Integration of transcriptional and post-transcriptional analysis revealed the early response mechanism of sugarcane to cold stress. Front Genet 11:. https://doi.org/10.3389/fgene.2020.581993

  160. Li C, Wang Z, Nong Q et al (2021) Physiological changes and transcriptome profiling in Saccharum spontaneum L. leaf under water stress and re-watering conditions. Sci Rep 11:5525. https://doi.org/10.1038/s41598-021-85072-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yang Y, Yu Q, Yang Y et al (2018) Identification of cold-related miRNAs in sugarcane by small RNA sequencing and functional analysis of a cold inducible ScmiR393 to cold stress. Environ Exp Bot 155:464–476. https://doi.org/10.1016/j.envexpbot.2018.07.030

    Article  CAS  Google Scholar 

  162. Dharshini S, Chakravarthi M, Ashwin Narayan J et al (2016) De novo sequencing and transcriptome analysis of a low temperature tolerant Saccharum spontaneum clone IND 00–1037. J Biotechnol 231:280–294. https://doi.org/10.1016/j.jbiotec.2016.05.036

    Article  CAS  PubMed  Google Scholar 

  163. Yang Y, Zhang X, Su Y et al (2017) miRNA alteration is an important mechanism in sugarcane response to low-temperature environment. BMC Genomics 18:833. https://doi.org/10.1186/s12864-017-4231-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Dharshini S, Hoang NV, Mahadevaiah C et al (2020) Root transcriptome analysis of Saccharum spontaneum uncovers key genes and pathways in response to low-temperature stress. Environ Exp Bot 171:103935. https://doi.org/10.1016/j.envexpbot.2019.103935

    Article  CAS  Google Scholar 

  165. Raju G, Shanmugam K, Kasirajan L (2020) High-throughput sequencing reveals genes associated with high-temperature stress tolerance in sugarcane. 3 Biotech 10:198. https://doi.org/10.1007/s13205-020-02170-z

    Article  PubMed  PubMed Central  Google Scholar 

  166. Su Y, Xu L, Wang Z et al (2016) Comparative proteomics reveals that central metabolism changes are associated with resistance against Sporisorium scitamineum in sugarcane. BMC Genomics 17:800. https://doi.org/10.1186/s12864-016-3146-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Cookson SJ, Yadav UP, Klie S et al (2016) Temporal kinetics of the transcriptional response to carbon depletion and sucrose readdition in Arabidopsis seedlings. Plant Cell Environ 39:768–786. https://doi.org/10.1111/pce.12642

    Article  CAS  PubMed  Google Scholar 

  168. Wang T-J, Wang X-H, Yang Q-H (2020) Comparative analysis of drought-responsive transcriptome in different genotype Saccharum spontaneum L. Sugar Tech 22:411–427. https://doi.org/10.1007/s12355-019-00774-1

    Article  CAS  Google Scholar 

  169. Dapanage M, Bhat S (2020) Transcriptome profiling through next-generation sequencing in sugarcane under moisture-deficit stress condition. Sugar Tech 22:396–410. https://doi.org/10.1007/s12355-020-00806-1

    Article  CAS  Google Scholar 

  170. Paul M, Pellny T, Goddijn O (2001) Enhancing photosynthesis with sugar signals. Trends Plant Sci 6:197–200. https://doi.org/10.1016/S1360-1385(01)01920-3

    Article  CAS  PubMed  Google Scholar 

  171. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. https://doi.org/10.1146/annurev.arplant.57.032905.105441

    Article  CAS  PubMed  Google Scholar 

  172. Botha FC, Black KG (2000) Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane. Aust J Zool 48:. https://doi.org/10.1071/TT99098

  173. Murad AM, Molinari HBC, Magalhães BS et al (2014) Physiological and proteomic analyses of Saccharum spp. grown under salt stress. PLoS ONE 9:e98463. https://doi.org/10.1371/journal.pone.0098463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wang Y, Li Y, Hua X et al (2022) Transcriptome dynamics underlying magnesium deficiency stress in three founding saccharum species. Int J Mol Sci 23:9681. https://doi.org/10.3390/ijms23179681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. da Silva RG, Rosa-Santos TM, de França SC et al (2019) Microtranscriptome analysis of sugarcane cultivars in response to aluminum stress. PLoS ONE 14:e0217806. https://doi.org/10.1371/journal.pone.0217806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Carnavale Bottino M, Rosario S, Grativol C et al (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS ONE 8:e59423. https://doi.org/10.1371/journal.pone.0059423

    Article  PubMed  PubMed Central  Google Scholar 

  177. Thirugnanasambandam PP, Hoang N v., Henry RJ (2018) The challenge of analyzing the sugarcane genome. Front Plant Sci 9:. https://doi.org/10.3389/fpls.2018.00616

  178. Riaño-Pachón DM, Mattiello L (2017) Draft genome sequencing of the sugarcane hybrid SP80–3280. F1000Res 6:861. https://doi.org/10.12688/f1000research.11859.2

    Article  PubMed  PubMed Central  Google Scholar 

  179. Aitken KS, McNeil MD, Hermann S et al (2014) A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput Diversity Array Technology (DArT) markers. BMC Genomics 15:152. https://doi.org/10.1186/1471-2164-15-152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Contiliani DF, de Oliveira Nebó JFC, Ribeiro RV et al (2022) Leaf transcriptome profiling of contrasting sugarcane genotypes for drought tolerance under field conditions. Sci Rep 12:9153. https://doi.org/10.1038/s41598-022-13158-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Huang X, Liang Y, Zhang B et al (2022) Comparative transcriptome analysis reveals potential gene modules associated with cold tolerance in sugarcane (Saccharum officinarum L.). J Plant Growth Regul 41:2614–2628. https://doi.org/10.1007/s00344-021-10437-9

    Article  CAS  Google Scholar 

  182. Nawae W, Shearman JR, Tangphatsornruang S et al (2020) Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ 8:e9608. https://doi.org/10.7717/peerj.9608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Pereira-Santana A, Alvarado-Robledo EJ, Zamora-Briseño JA et al (2017) Transcriptional profiling of sugarcane leaves and roots under progressive osmotic stress reveals a regulated coordination of gene expression in a spatiotemporal manner. PLoS ONE 12:e0189271. https://doi.org/10.1371/journal.pone.0189271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rosa-Santos TM, da Silva RG, Kumar P et al (2020) Molecular mechanisms underlying sugarcane response to aluminum stress by RNA-Seq. Int J Mol Sci 21:7934. https://doi.org/10.3390/ijms21217934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Passamani LZ, Barbosa RR, Reis RS et al (2017) Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots. PLoS ONE 12:e0176076. https://doi.org/10.1371/journal.pone.0176076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Maranho RC, Benez MM, Maranho GB et al (2019) Proteomic analysis of axillary buds of sugarcane at different cutting stages: evidence for alterations in axillary bud gene expression. Crop Pasture Sci 70:622. https://doi.org/10.1071/CP19115

    Article  CAS  Google Scholar 

  187. Budzinski IGF, de Moraes FE, Cataldi TR, et al (2019) Network analyses and data integration of proteomics and metabolomics from leaves of two contrasting varieties of sugarcane in response to drought. Front Plant Sci 10:. https://doi.org/10.3389/fpls.2019.01524

  188. Salvato F, Loziuk P, Kiyota E, et al (2019) Label‐free quantitative proteomics of enriched nuclei from sugarcane ( Saccharum ssp) stems in response to drought stress. Proteomics 1900004. https://doi.org/10.1002/pmic.201900004

  189. Chiconato DA, de Santana Costa MG, Balbuena TS et al (2021) Proteomic analysis of young sugarcane plants with contrasting salt tolerance. Funct Plant Biol 48:588. https://doi.org/10.1071/FP20314

    Article  CAS  PubMed  Google Scholar 

  190. Fan Y-G, Chen R-F, Qiu L-H et al (2021) Quantitative proteomics analysis of sugarcane ratoon crop chlorosis. Sugar Tech 23:673–681. https://doi.org/10.1007/s12355-021-00952-0

    Article  CAS  Google Scholar 

  191. Qin C-X, Chen Z-L, Wang M et al (2021) Identification of proteins and metabolic networks associated with sucrose accumulation in sugarcane (Saccharum spp. interspecific hybrids). J Plant Interact 16:166–178. https://doi.org/10.1080/17429145.2021.1912840

    Article  CAS  Google Scholar 

  192. Bosch S, Rohwer J, Botha F (2003) The sugarcane metabolome. Proc Annu Congr S Afr Sugar Technol 77:129–133

    Google Scholar 

  193. Bassi D, Menossi M, Mattiello L (2018) Nitrogen supply influences photosynthesis establishment along the sugarcane leaf. Sci Rep 8:2327. https://doi.org/10.1038/s41598-018-20653-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ferreira DA, Martins MCM, Cheavegatti-Gianotto A, et al (2018) Metabolite profiles of sugarcane culm reveal the relationship among metabolism and axillary bud outgrowth in genetically related sugarcane commercial cultivars. Front Plant Sci 9:. https://doi.org/10.3389/fpls.2018.00857

  195. Valarmathi R, Swamy HKM, Preeti K, Appunu C (2021) Comparative profiling of drought induced root metabolic responses in sugarcane wild relative Erianthus arundinaceus (IND 04–1335) and a commercial variety Co 99004. J Environ Biol 42:668–677. https://doi.org/10.22438/jeb/42/3/MRN-1507

    Article  Google Scholar 

  196. Bottcher A, Domingues-Junior AP, Souza LP de, et al (2021) Sugarcane cell suspension reveals major metabolic changes under different nitrogen starvation regimes. Bragantia 80:. https://doi.org/10.1590/1678-4499.2021-0009

  197. Luo T, Zhou Z, Deng Y et al (2022) Transcriptome and metabolome analyses reveal new insights into chlorophyll, photosynthesis, metal ion and phenylpropanoids related pathways during sugarcane ratoon chlorosis. BMC Plant Biol 22:222. https://doi.org/10.1186/s12870-022-03588-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yang S, Chu N, Zhou H et al (2022) Integrated analysis of transcriptome and metabolome reveals the regulation of chitooligosaccharide on drought tolerance in sugarcane (Saccharum spp. hybrid) under drought stress. Int J Mol Sci 23:9737. https://doi.org/10.3390/ijms23179737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Vital CE, Giordano A, de Almeida SE et al (2017) An integrative overview of the molecular and physiological responses of sugarcane under drought conditions. Plant Mol Biol 94:577–594. https://doi.org/10.1007/s11103-017-0611-y

    Article  CAS  PubMed  Google Scholar 

  200. Tavares EQP, Buckeridge MS (2015) Do plant cell walls have a code? Plant Sci 241:286–294. https://doi.org/10.1016/j.plantsci.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  201. Tavares EQP, Camara Mattos Martins M, Grandis A, et al (2020) Newly identified miRNAs may contribute to aerenchyma formation in sugarcane roots. Plant Direct 4:. https://doi.org/10.1002/pld3.204

  202. Piovezani AR (2017) Systems Integration Tool: uma ferramenta para integração e visualização de dados em larga escala e sua aplicação em cana-de-açúcar [Thesis]. University of São Paulo

    Google Scholar 

  203. Leite DCC, Grandis A, Tavares EQP et al (2017) Cell wall changes during the formation of aerenchyma in sugarcane roots. Ann Bot 120:693–708. https://doi.org/10.1093/aob/mcx050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Argueso CT, Assmann SM, Birnbaum KD, et al (2019) Directions for research and training in plant omics: big questions and big data. Plant Direct 3:. https://doi.org/10.1002/pld3.133

  205. Barnabas L, Ramadass A, Amalraj RS et al (2015) Sugarcane proteomics: an update on current status, challenges, and future prospects. Proteomics 15:1658–1670. https://doi.org/10.1002/pmic.201400463

    Article  CAS  PubMed  Google Scholar 

  206. Ali A, Khan M, Sharif R et al (2019) Sugarcane omics: an update on the current status of research and crop improvement. Plants 8:344. https://doi.org/10.3390/plants8090344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Schulze WX, Usadel B (2010) Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61:491–516. https://doi.org/10.1146/annurev-arplant-042809-112132

    Article  CAS  PubMed  Google Scholar 

  208. Goshe MB, Smith RD (2003) Stable isotope-coded proteomic mass spectrometry. Curr Opin Biotechnol 14:101–109. https://doi.org/10.1016/S0958-1669(02)00014-9

    Article  CAS  PubMed  Google Scholar 

  209. Aebersold R, Tao WA (2003) Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. Curr Opin Biotechnol 14:110–118

    Article  PubMed  Google Scholar 

  210. Ong S-E, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650–2660. https://doi.org/10.1038/nprot.2006.427

    Article  CAS  PubMed  Google Scholar 

  211. Hsu J-L, Huang S-Y, Chow N-H, Chen S-H (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852. https://doi.org/10.1021/ac0348625

    Article  CAS  PubMed  Google Scholar 

  212. Shahaf N, Rogachev I, Heinig U et al (2016) The WEIZMASS spectral library for high-confidence metabolite identification. Nat Commun 7:12423. https://doi.org/10.1038/ncomms12423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Glassop D, Bonnett GD (2007) Changes in the sugarcane metabolome with stem development. Are they Related to Sucrose Accumulation? 48:573–584. https://doi.org/10.1093/pcp/pcm027

    Article  CAS  Google Scholar 

  214. de Souza AP, Grandis A, Arenque-Musa BC, Buckeridge MS (2018) Diurnal variation in gas exchange and nonstructural carbohydrates throughout sugarcane development. Funct Plant Biol 45:865. https://doi.org/10.1071/FP17268

    Article  CAS  PubMed  Google Scholar 

  215. Marquardt A, Scalia G, Wathen-Dunn K, Botha FC (2017) Yellow canopy syndrome (YCS) in sugarcane is associated with altered carbon partitioning in the leaf. Sugar Tech 19:647–655. https://doi.org/10.1007/s12355-017-0555-1

    Article  CAS  Google Scholar 

  216. Rasheed R, Wahid A, Hussain I et al (2016) Partial repair of salinity-induced damage to sprouting sugarcane buds by proline and glycinebetaine pretreatment. Protoplasma 253:803–813. https://doi.org/10.1007/s00709-015-0841-2

    Article  CAS  PubMed  Google Scholar 

  217. Rasheed R, Wahid A, Farooq M et al (2011) Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul 65:35–45. https://doi.org/10.1007/s10725-011-9572-3

    Article  CAS  Google Scholar 

  218. van Emon JM (2016) The omics revolution in agricultural research. J Agric Food Chem 64:36–44. https://doi.org/10.1021/acs.jafc.5b04515

    Article  CAS  PubMed  Google Scholar 

  219. Mustafa MG, Khan MGM, Nguyen D, Iqbal S (2018) Techniques in biotechnology. In: Omics Technologies and Bio-Engineering. Elsevier, 233–249

  220. Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8. https://doi.org/10.1093/jexbot/51.342.1

    Article  CAS  PubMed  Google Scholar 

  221. Lakshmanan P, Robinson N (2013) Stress physiology: abiotic stresses. Sugarcane: Physiology, Biochemistry, and Functional Biology. John Wiley & Sons Ltd, Chichester, pp 411–434

    Chapter  Google Scholar 

  222. de Souza AP, Gaspar M, da Silva EA et al (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127. https://doi.org/10.1111/j.1365-3040.2008.01822.x

    Article  CAS  PubMed  Google Scholar 

  223. Inman-Bamber NG, Lakshmanan P, Park S (2012) Sugarcane for water-limited environments: theoretical assessment of suitable traits. Field Crops Res 134:95–104. https://doi.org/10.1016/j.fcr.2012.05.004

    Article  Google Scholar 

  224. Shrivastava AK, Jain R, Rai RK, Singh P (2009) Compensatory ability in sugarcane, in Sugarcane. Crop Production and Improvement 543–556

  225. Humbert RP (1963) The growing of sugarcane. Elsevier, Elsevier, Amsterdam, p 710

    Google Scholar 

  226. Gomathi R, Gururaja Rao PN, Chandran K, Selvi A (2015) Adaptive responses of sugarcane to waterlogging stress: an over view. Sugar Tech 17:325–338. https://doi.org/10.1007/s12355-014-0319-0

    Article  CAS  Google Scholar 

  227. Selvi A, Devi R, Gomathi K, et al (2013) Analysis of gene expression profiles in tolerant and sensitive sugarcane genotypes subjected to water logging stress. In Proceeding of National Conference ‘“Recent Advances and Challenges in Sugarcane Research, NSSR-2014.”’ Mysore 18

  228. Misra V, Solomon S, Mall AK et al (2020) Morphological assessment of water stressed sugarcane: a comparison of waterlogged and drought affected crop. Saudi J Biol Sci 27:1228–1236. https://doi.org/10.1016/j.sjbs.2020.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  229. Palachai CH, Songsri P, Jongrungklang N (2019) Comparison of yield components of sugarcane varieties grown under natural short- and long-term water-logged conditions in Thailand. SABRAO Journal of Breeding and Genetics. In: http://sabraojournal.org/comparison-of-yield-components-of-sugarcane-varieties-grown-under-natural-short-and-long-term-water-logged-conditions-in-thailand

  230. Patade VY, Bhargava S, Suprasanna P (2011) Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress: growth, osmolytes accumulation, and antioxidant defense. J Plant Interact 6:275–282. https://doi.org/10.1080/17429145.2011.557513

    Article  CAS  Google Scholar 

  231. Suprasanna P, Patade VY, Desai NS et al (2011) Biotechnological developments in sugarcane improvement: an overview. Sugar Tech 13:322–335. https://doi.org/10.1007/s12355-011-0103-3

    Article  CAS  Google Scholar 

  232. Sengar K, Sengar RS, Singh A (2013) Biotechnological and genomic analysis for salinity tolerance in sugarcane. 407–414

  233. Karen R (2000) Salinity. ed. Sumner M.E. Handbook of soil science. Boca Raton: CRC Press

  234. Liang Y, Zhang W, Chen Q, Ding R (2005) Effects of silicon on H+-ATPase and H+-PPase activity, fatty acid composition and fluidity of tonoplast vesicles from roots of salt-stressed barley (Hordeum vulgare L.). Environ Exp Bot 53:29–37. https://doi.org/10.1016/j.envexpbot.2004.02.010

    Article  CAS  Google Scholar 

  235. Siddiqui MH, Al-Whaibi MH, Faisal M, Al-Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  236. Rozeff N (1995) Sugarcane and salinity—a review paper. Sugar Cane 5:8–19

    Google Scholar 

  237. Granja MMC, Medeiros MJA, Silva MMDA et al (2018) Acta biologica Colombiana. Acta Biolo Colomb 23:30–38

    CAS  Google Scholar 

  238. Ramesh P (2000) Sugarcane Breeding Institute, Coimbatore, India Effect of different levels of drought during the formative phase on growth parameters and its relationship with dry matter accumulation in sugarcane. J Agron Crop Sci 185:83–89. https://doi.org/10.1046/j.1439-037x.2000.00404.x

    Article  Google Scholar 

  239. Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crops Res 89:107–122. https://doi.org/10.1016/j.fcr.2004.01.018

    Article  Google Scholar 

  240. Ferreira THS, Tsunada MS, Bassi D, et al (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:. https://doi.org/10.3389/fpls.2017.01077

  241. Ramiro DA, Melotto-Passarin DM, de Barbosa MA et al (2016) Expression of Arabidopsis Bax Inhibitor-1 in transgenic sugarcane confers drought tolerance. Plant Biotechnol J 14:1826–1837. https://doi.org/10.1111/pbi.12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:. https://doi.org/10.3389/fpls.2016.00067

  243. Cominelli E, Conti L, Tonelli C, Galbiati M (2013) Challenges and perspectives to improve crop drought and salinity tolerance. N Biotechnol 30:355–361. https://doi.org/10.1016/j.nbt.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  244. Carr MKV, Knox JW (2011) The water relations and irrigation requirements of sugar cane Saccharum officinarum: a review. Exp Agric 47:1–25. https://doi.org/10.1017/S0014479710000645

    Article  Google Scholar 

  245. Singels APJ, Inman-Bamber G (2021) Crop physiology case histories for major crops. Elsevier

    Google Scholar 

  246. Bonnett GD, Hewitt ML, Glassop D (2006) Effects of high temperature on the growth and composition of sugarcane internodes. Aust J Agric Res 57:1087. https://doi.org/10.1071/AR06042

    Article  Google Scholar 

  247. Merwe MJ van der, Botha FC (2014) Sugarcane: physiology, biochemistry, and functional biology. ed. Paul H. Moore, Frederik C. Botha. Chapter 7 Respiration as a Competitive Sink for Sucrose Accumulation in Sugarcane Culm: Perspectives and Open Questions. 155–168

  248. Moore G (1995) Cereal genome evolution: pastoral pursuits with ‘Lego’ genomes. Curr Opin Genet Dev 5:717–724

    Article  CAS  PubMed  Google Scholar 

  249. Glover J (1973) The dark respiration of sugar-cane and the loss of photosynthate during the growth of a crop. Ann Bot 37:845–852. https://doi.org/10.1093/oxfordjournals.aob.a084753

    Article  Google Scholar 

  250. Watt DA, Cramer MD (2009) Post-harvest biology of sugarcane. Sugar Tech 11:142–145. https://doi.org/10.1007/s12355-009-0021-9

    Article  Google Scholar 

  251. Groszmann M, Greaves IK, Albertyn ZI et al (2011) Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc Natl Acad Sci 108:2617–2622. https://doi.org/10.1073/pnas.1019217108

    Article  PubMed  PubMed Central  Google Scholar 

  252. Sage RF, Peixoto MM, Sage TL (2013) Photosynthesis in sugarcane. Sugarcane: Physiology, Biochemistry, and Functional Biology. John Wiley & Sons Ltd, Chichester, pp 121–154

    Chapter  Google Scholar 

  253. Irvine JE (1975) Relations of photosynthetic rates and leaf and canopy characters to sugarcane yield. Crop Sci 15:671–676

    Article  Google Scholar 

  254. Vu JCV, Allen LH, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci 171:123–131. https://doi.org/10.1016/j.plantsci.2006.03.003

    Article  CAS  Google Scholar 

  255. Ziska LH, Bunce JA (1997) Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth Res 54:199–208. https://doi.org/10.1023/A:1005947802161

    Article  CAS  Google Scholar 

  256. Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650. https://doi.org/10.1111/j.1365-2486.2008.01594.x

    Article  Google Scholar 

  257. Leakey ADB, Ainsworth EA, Bernacchi CJ et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876. https://doi.org/10.1093/jxb/erp096

    Article  CAS  PubMed  Google Scholar 

  258. Kingston G (1994) Benchmarking yield of sugarcane from estimates of crop water use. Proc Aust Soc Sugar Cane Technol 16:201–209

    Google Scholar 

  259. Robertson MJ, Muchow RC (1997) Variation in the effectiveness of rainfall meeting crop water requirements in the Australian sugar industry. Proc Aust Soc Sugar Cane Technol 19:229–236

    Google Scholar 

  260. Robertson MJ, Inman-Bamber NG, Muchow RC, Wood AW (1999) Physiology and productivity of sugarcane with early and mid-season water deficit. Field Crops Res 64:211–227. https://doi.org/10.1016/S0378-4290(99)00042-8

    Article  Google Scholar 

  261. Botha FC, Lakshmanan P, O’Connell A, Moore PH (2013) Hormones and growth regulators. Sugarcane: Physiology, Biochemistry, and Functional Biology. John Wiley & Sons Ltd, Chichester, pp 331–377

    Chapter  Google Scholar 

  262. Fahad S, Nie L, Chen Y, et al (2015) Crop plant hormones and environmental stress. 371–400

  263. Aldesuquy HS, Ibrahim AH (2001) Interactive effect of seawater and growth bioregulators on water relations, abscisic acid concentration and yield of wheat plants. J Agron Crop Sci 187:185–193. https://doi.org/10.1046/j.1439-037x.2001.00522.x

    Article  CAS  Google Scholar 

  264. Tavares EQP, Grandis A, Lembke CG et al (2018) Roles of auxin and ethylene in aerenchyma formation in sugarcane roots. Plant Signal Behav 13:e1422464. https://doi.org/10.1080/15592324.2017.1422464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Wilkinson S, Kudoyarova GR, Veselov DS et al (2012) Plant hormone interactions: innovative targets for crop breeding and management. J Exp Bot 63:3499–3509. https://doi.org/10.1093/jxb/ers148

    Article  CAS  PubMed  Google Scholar 

  266. Silva MA, Caputo MM (2012) Ripening and the use of ripeners for better sugarcane management in crop management: cases and tools for higher yield and sustainability. ed. Marin. 1–24

  267. Abeles FB, Morgan PW, Saltveit ME (1992) The role of ethylene in agriculture in Ethylene in plant biology. San Diego Academic Press: 264–296

  268. Chen Z, Qin C, Wang M et al (2019) Ethylene-mediated improvement in sucrose accumulation in ripening sugarcane involves increased sink strength. BMC Plant Biol 19:285. https://doi.org/10.1186/s12870-019-1882-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Antonio Carbonari C, Gomes GLGC, Domingues Velini E et al (2014) Glyphosate effects on sugarcane metabolism and growth. Am J Plant Sci 05:3585–3593. https://doi.org/10.4236/ajps.2014.524374

    Article  CAS  Google Scholar 

  270. Roopendra K, Sharma A, Chandra A, Saxena S (2018) Gibberellin-induced perturbation of source–sink communication promotes sucrose accumulation in sugarcane. 3 biotech 8:418. https://doi.org/10.1007/s13205-018-1429-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Grof CPL, Albertson PL, Bursle J et al (2007) Sucrose-phosphate synthase, a biochemical marker of high sucrose accumulation in sugarcane. Crop Sci 47:1530–1539. https://doi.org/10.2135/cropsci2006.12.0825

    Article  CAS  Google Scholar 

  272. Anur RM, Mufithah N, Sawitri WD et al (2020) Overexpression of sucrose phosphate synthase enhanced sucrose content and biomass production in transgenic sugarcane. Plants 9:200. https://doi.org/10.3390/plants9020200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149. https://doi.org/10.1111/j.1365-3040.2007.01708.x

    Article  CAS  PubMed  Google Scholar 

  274. Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:273–278. https://doi.org/10.1016/j.pbi.2009.12.002

    Article  CAS  Google Scholar 

  275. Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Curr Opin Plant Biol 33:116–125. https://doi.org/10.1016/j.pbi.2016.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Dobrenel T, Caldana C, Hanson J et al (2016) TOR signaling and nutrient sensing. Annu Rev Plant Biol 67:261–285. https://doi.org/10.1146/annurev-arplant-043014-114648

    Article  CAS  PubMed  Google Scholar 

  277. Ponnu J, Wahl V, Schmid M (2011) Trehalose-6-phosphate: connecting plant metabolism and development. Front Plant Sci 2:. https://doi.org/10.3389/fpls.2011.00070

  278. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. https://doi.org/10.1016/j.pbi.2004.03.014

    Article  CAS  PubMed  Google Scholar 

  279. Junior NN, Pereira Nicolau MS, Mantovanini LJ, Zingaretti SM (2013) Expression analysis of two genes coding for trehalose-6-phosphate synthase (TPS), in sugarcane (Saccharumm spp.) under water stress. Am J Plant Sci 04:91–99. https://doi.org/10.4236/ajps.2013.412A3011

    Article  Google Scholar 

  280. McCormick JA, Cramer MD, Watt DA (2008) Differential expression of genes in the leaves of sugarcane in response to sugar accumulation. Trop Plant Biol 1:142–158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of São Paulo, the National Council for Scientific and Technological Development (CNPq), and the São Paulo Research Foundation (FAPESP) for providing support for this study and to develop knowledge towards subsequent research works.

Funding

This work was supported by the Instituto Nacional de Ciência e Tecnologia do Bioetanol – INCT do Bioetanol (FAPESP 2014/50884–5 and CNPq 465319/2014–9) and the Research Center of Green House Gas Innovation (RCGI) (FAPESP 2014/50279–4 and 2020/15230–5). AG (FAPESP 2019/13936–0 and BEPE 2022/05524–7). BVN (FAPESP 2022/00441–6) LO (CNPq 142090/2018–2). JSF (CNPq 380198/2021–5).

Author information

Authors and Affiliations

Authors

Contributions

The idea for the article was conceived by MB, AG, and BVN; AG, JSF, BVN, and LO performed the literature search and data analysis; the first draft was prepared by AG, JSF, BVN, and LO. MB also involved in the draft preparation, preparation of the final version, and critical revision of the manuscript.

Corresponding author

Correspondence to Marcos S. Buckeridge.

Ethics declarations

Consent for Publication

The authors agree with the publication of this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grandis, A., Fortirer, J.S., Navarro, B.V. et al. Biotechnologies to Improve Sugarcane Productivity in a Climate Change Scenario. Bioenerg. Res. (2023). https://doi.org/10.1007/s12155-023-10649-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-023-10649-9

Keywords

Navigation