Skip to main content

Advertisement

Log in

Pollution to Product—a Novel Two-Stage Single-Pot Fermentative Production of 1,3-Propanediol

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Many industrial chemicals are currently produced from fossil resources. However, extensive use of fossil fuels has resulted in an alarming array of energy and pollution-related challenges. The industrial chemicals that are produced from fossil resources could be produced alternatively using green route in a sustainable manner. Here we report the production of 1,3-propanediol (1,3-PDO) through fermentative route using sugarcane processing wastes (sugarcane bagasse). This study used the second-generation (2G) fermentable sugar (2G FS) recovered from the low-cost feedstock sugarcane bagasse as a substrate for 1,3-PDO production through a mixed culture fermentation in a single pot using Saccharomyces cerevisiae NCIM 3594 and Klebsiella pneumoniae NCIM 2957. This novel concept of single-pot, mixed culture fermentation method to produce 1,3-PDO was verified by optimizing process parameters like substrate concentration (2G FS), pH, and temperature. The concentration of 2G FS was varied in the range of 0.5–5% (V2G FS/Vworking volume), pH was varied between 6 and 7, and the temperature range was 30–37°C. The maximum production of 1,3-PDO was observed at the concentration of 5% (V2G FS/Vworking volume), at an optimum pH of 6.8 and a temperature of 35°C. The evaluated thermodynamics parameters for analyzing the rate of fermentation were enthalpy (ΔH), −47596 KJ/mol; activation energy (ΔE), −47596 KJ/mol; entropy (ΔS), 500.46 J/mol; and Gibbs free energy (ΔG), −2.018 × 105 J/mol; and the kinetics parameters were specific growth rate (μ), 0.0053 h−1; cell mass productivity (Qx), 0.249 g/L/h; rate of production (Qp), 0.237 g/L/h; and product yield (Yp/s), 0.0427 g/g. This work demonstrates a novel single-pot method to produce 1,3-PDO from a low-cost feedstock and makes a valuable contribution to the development of a cost-effective fermentation based on renewable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5(1):1–15. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  2. Tripathi N, Hills CD, Singh RS, Atkinson CJ (2019) Biomass waste utilisation in low-carbon products: harnessing a major potential resource. NPJ Clim Atmos Sci 2(1):1–10. https://doi.org/10.1038/s41612-019-0093-5

    Article  CAS  Google Scholar 

  3. Takkellapati S, Li T, Gonzalez MA (2018) An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Technol Environ Policy 20(7):1615–1630. https://doi.org/10.1007/s10098-018-1568-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yevich R, Logan JA (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochem Cycles 17(4):1095. https://doi.org/10.1029/2002GB001952

    Article  CAS  Google Scholar 

  5. Weizmann C, Rosenfeld B (1937) The activation of the butanol-acetone fermentation of carbohydrates by Clostridium acetobutylicum (Weizmann). Biochem J 31(4):619–639. https://doi.org/10.1042/bj0310619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zheng ZM, Xu YZ, Liu HJ, Guo NN, Cai ZZ, Liu DH (2008) Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae. Biotechnol Bioeng 100:100. https://doi.org/10.1002/bit.21830

    Article  CAS  Google Scholar 

  7. Sun YQ, Shen JT, Yan L, Zhou JJ, Jiang LL, Chen Y, Yuan JL, Feng E, Xiu ZL (2018) Advances in bioconversion of glycerol to 1,3-propanediol: prospects and challenges. Process Biochem 71:34–146. https://doi.org/10.1016/j.procbio.2018.05.009

    Article  CAS  Google Scholar 

  8. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913. https://doi.org/10.1016/j.biotechadv.2009.07.003

    Article  CAS  PubMed  Google Scholar 

  9. Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5(11):1137–1148. https://doi.org/10.1002/biot.201000140

    Article  CAS  PubMed  Google Scholar 

  10. Zhu Y, Wang Y, Gao H, Wang H, Wan Z, Jiang Y, Jiang M (2021) Current advances in microbial production of 1,3-propanediol. Biofuels Bioprod Biorefin 15(5):1566–1583. https://doi.org/10.1002/bbb.2254

    Article  CAS  Google Scholar 

  11. Kleerebezem R, VanLoosdrecht MC (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18(3):207–212. https://doi.org/10.1016/j.copbio.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  12. Rehman A, Matsumura M, Nomura N, Sato S (2008) Growth and 1, 3-propanediol production on pre-treated sunflower oil bio-diesel raw glycerol using a strict anaerobe Clostridium butyricum. Curr Res Bacteriol 1:7–16

    Article  Google Scholar 

  13. Gallardo R, Faria C, Rodrigues LR, Pereira MA, Alves MM (2014) Anaerobic granular sludge as a biocatalyst for 1,3-propanediol production from glycerol in continuous bioreactors. Bioresour Technol 155:28–33. https://doi.org/10.1016/j.biortech.2013.12.008

    Article  CAS  PubMed  Google Scholar 

  14. Anand S, Muthu Kumar S, Mukherjee K, Padmanabhan P (2022) Insight into fermentable sugar recovery process from sugarcane bagasse: in silico elucidation of enzymatic hydrolysis and techno-economic assessment. J Taibah Univ Sci 16(1):204–213. https://doi.org/10.1080/16583655.2022.2040243

    Article  Google Scholar 

  15. Xin B, Wang Y, Tao F, Li L, Ma C, Xu P (2016) Co-utilization of glycerol and lignocellulosic hydrolysates enhances anaerobic 1,3-propanediol production by Clostridium diolis. Sci Rep 6(1):1–10. https://doi.org/10.1038/srep19044

    Article  CAS  Google Scholar 

  16. Semkiv MV, Dmytruk KV, Abbas CA, Sibirny AA (2017) Metabolic engineering for high glycerol production by the anaerobic cultures of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101(11):4403–4416. https://doi.org/10.1007/s00253-017-8202-z

    Article  CAS  PubMed  Google Scholar 

  17. Nevoigt E, Stahl U (1997) Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 21(3):231–241. https://doi.org/10.1111/j.1574-6976.1997.tb00352.x

    Article  CAS  PubMed  Google Scholar 

  18. Kumar V, Park S (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36(1):150–167. https://doi.org/10.1016/j.biotechadv.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Jung MY, Oh MK (2018) High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol Biofuels 11(1):1–13. https://doi.org/10.1186/s13068-018-1100-5

    Article  CAS  Google Scholar 

  20. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr opin Biotechnol 14(5):454–459. https://doi.org/10.1016/j.copbio.2003.08.005

    Article  CAS  PubMed  Google Scholar 

  21. Anne LL, Vasantha N, Edwin NC (1997) Bioconversion of a fermentable carbon source to 1, 3-propanediol by a single microorganism. In: US Patent 5686276. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  22. Haq I, Javid MM, Hamid U, Adnan F (2010) Kinetic and thermodynamic studies of alpha amylose from Bacillus Licheniformic mutant park. Pakistan J Biotechnol 42(5):3507–3516

    Google Scholar 

  23. Duy C, Fitter J (2005) Thermostability and irreversible unfolding amylases analyzed by unfolding kinetics. J Biol Chem 280(45):37360–37365. https://doi.org/10.1074/jbc.M507530200

    Article  CAS  PubMed  Google Scholar 

  24. Eisenthal R, Danson MJ, Hough DW (2007) Catalytic efficiency and Kcat/Km: a useful comparator? Trends Biotechnol 25(6):247–249. https://doi.org/10.1016/j.tibtech.2007.03.010

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Dayun Z, Yanqin W, Shoujun W, Weihua Y, Meng K, Lei M, Dan F, Shuangjiao X, Shuang-kui D (2016) Bioethanol production from cotton stalk: a comparative study of various pretreatments. Fuel 184:527–532. https://doi.org/10.1016/j.fuel.2016.07.061

    Article  CAS  Google Scholar 

  26. Mendes FM, Germano S, Walter C, André F, Adriane MFM (2011) Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnol Prog 27:395–401. https://doi.org/10.1002/btpr.553

    Article  CAS  PubMed  Google Scholar 

  27. Kaur G, Srivastava AK, Chand S (2012) Determination of kinetic parameters of 1,3-propanediol fermentation by Clostridium diolis using statistically optimized medium. Bioprocess Biosyst Eng 35:1147–1156. https://doi.org/10.1007/s00449-012-0700-x

    Article  CAS  PubMed  Google Scholar 

  28. Rajoka MI, Ferhan M, Khalid AM (2005) Kinetics and thermodynamics of ethanol production by a thermotolerant mutant of Saccharomyces cerevisiae in a microprocessor-controlled bioreactor. Lett Appl Microbiol 40(5):316–321. https://doi.org/10.1111/j.1472-765X.2005.01663.x

    Article  CAS  PubMed  Google Scholar 

  29. Danish M, Mumtaz MW, Fakhar M, Rashid U (2017) Response surface methodology based optimized purification of the residual glycerol from biodiesel production process. Chiang Mai J Sci 44(4):1570–1582

    CAS  Google Scholar 

  30. González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446. https://doi.org/10.1007/s10295-004-0168-z

    Article  CAS  PubMed  Google Scholar 

  31. Streekstra H, De Mattos MT, Neijssel OM, Tempest DW (1987) Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol 147(3):268–275. https://doi.org/10.1007/BF00463487

    Article  CAS  Google Scholar 

  32. Zeng AP, Ross A, Biebl H, Tag C, Gunzel B, Deckwer WD (1994) Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumoniae in glycerol fermentation. Biotechnol Bioeng 44:902–911. https://doi.org/10.1002/bit.260440806

    Article  CAS  PubMed  Google Scholar 

  33. Zeng M, Shentu X, Bian Y, Yu X (2012) 1,3-Propanediol production from glucose by mixed-culture fermentation of Zygosacharomyces rouxii and Klebsiella pneumonia. Eng Life Sci 12(5):553–559. https://doi.org/10.1002/elsc.201100238

    Article  CAS  Google Scholar 

  34. Anand S, Kuppusamy RRP, Padmanabhan P (2020) Insight into the kinetically and thermodynamically controlled biosynthesis of silver nanoparticles. IET Nanobiotechnol 14(9):864–869. https://doi.org/10.1049/iet-nbt.2019.0373

    Article  PubMed  PubMed Central  Google Scholar 

  35. Felix E, Clara O, Vincent AO (2014) Thermodynamic characterization of Saccharomyces cerevisiae catalyzed fermentation of cane sugar. Open J Phys Chem 4(1):21–25. https://doi.org/10.4236/ojpc.2014.41004

    Article  CAS  Google Scholar 

  36. Jiang Y, Liu W, Zou H, Cheng T, Tian N, Xian M (2014) Microbial production of short chain diols. Microb Cell Factories 13(1):1–17. https://doi.org/10.1186/PREACCEPT-5297584212857603

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to TEQIP-III for financial support and the Central Instrumentation Facility, BIT Mesra, and MRD Life Sciences, Lucknow, for analysis of samples.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Shreya Anand, Koel Mukherjee, and Padmini Padmanabhan. The first draft of the manuscript was written by Shreya Anand, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Padmini Padmanabhan.

Ethics declarations

Research Involving Human Participation and/or Animals

The authors declare no involvement of human participation and/or animals in this research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Mukherjee, K. & Padmanabhan, P. Pollution to Product—a Novel Two-Stage Single-Pot Fermentative Production of 1,3-Propanediol. Bioenerg. Res. 16, 1528–1536 (2023). https://doi.org/10.1007/s12155-023-10570-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10570-1

Keywords

Navigation