Skip to main content

Advertisement

Log in

Technological Advancement in Harvesting of Cotton Stalks to Establish Sustainable Raw Material Supply Chain for Industrial Applications: a Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The cultivation of cotton produces about 2–3 tonne of residues per hectare after harvesting. Uprooting and disposal of such a huge amount of cotton residues have become a serious problem. In this review, different technologies developed for clearing standing cotton stalks from the field, performances of available technologies, limitations, and technological gap for future work are discussed. Unlike other crop residues, cotton residue has fiber properties similar to most hardwood species. Hence, it is more suitable for various industrial applications like production of particle board, hardboard, pulp, paper, and corrugated boxes. It is also a cleaner fuel as compared to coal due to lower carbon and ash content based on ultimate analysis. Therefore, it can be used as fuel for power plant and as bio-energy. The potential of the use of cotton stalks for composting, briquetting, biochar, bio-oil, and bioethanol production, etc. is also discussed in the paper. It was observed that, the cotton waste was available in abundance; however, efficient machinery to remove the cotton stalks from field and simultaneously convert it into storable or directly usable form as a raw material for various applications was needed. The use of cotton stalks is techno-economically feasible for various applications but still more work is required in bio-ethanol production from cotton stalks to improve the yield of ethanol and for making the process more economical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AS-AQ:

Alkaline sulfite eanthraquinone

DSAP:

Dilute sulfuric acid pretreatment

GDP:

Gross domestic product

GHGs:

Greenhouse gas

HPAP:

High pressure–assisted alkali pretreatment

KCP:

Konjacglucomannan-chitosan-polyvinyl alcohol

MDF:

Medium density fiber

OCB:

Oriented cotton stalk board

PTO:

Power take-off

PVT:

Private

SHF:

Separate hydrolysis and fermentation

UAAP:

Ultrasound-assisted alkali pretreatment

UF:

Urea formaldehyde

References

  1. Senthilkumar T, Thilagam VK (2015) Study on effect of incorporation of shredded cotton stalks by cotton stalk shredder on soil properties. Madras Agric J 102:193–195

    Google Scholar 

  2. Meyer LA (2021) Cotton and wool outlook China and India lead 2021/22 Global cotton mill use increase. CWS-21j, US Department of agriculture,Economic research service, October 14, 2021. https://www.ers.usda.gov/webdocs/outlooks/102342/cws-21j.pdf?v=7694.9 Accessed 20 August 2022

  3. Singh A (2020) Cotton statistics and news. Wkly. Publ. Cott. Assoc. India, 26 pp 8 https://www.caionline.in/site/publications Accessed 04 August 2022

  4. Sood D (2022) Cotton and products annual, USDA foreign agricultural service. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Cotton%20and%20Products%20Annual_New%20Delhi_India_IN2022-0026.pdf Accessed 21 August 2022

  5. Ramanjaneyulu A, Ramprasad B, Sainath N et al (2021) Crop residue management in cotton. Chron Bioresour Manag 5:1–8

    Google Scholar 

  6. Fawzy S, Osman AI, Farrell C et al (2021) Characterization and kinetic modeling for pyrolytic conversion of cotton stalks. Energy Sci Eng 9:1908–1918. https://doi.org/10.1002/ese3.961

    Article  CAS  Google Scholar 

  7. Holt GA, Chow P, Wanjura JD et al (2014) Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers. Ind Crops Prod 52:627–632. https://doi.org/10.1016/j.indcrop.2013.11.003

    Article  CAS  Google Scholar 

  8. Wanjura JD, Barnes EM, Kelley MS et al (2014) Quantification and characterization of cotton crop biomass residue. Ind Crops Prod 56:94–104. https://doi.org/10.1016/j.indcrop.2014.02.019

    Article  CAS  Google Scholar 

  9. He Z, Cheng HN, Chapital DC, Dowd MK (2014) Sequential fractionation of cottonseed meal to improve its wood adhesive properties JAOCS. J Am Oil Chem Soc 91:151–158. https://doi.org/10.1007/s11746-013-2349-2

    Article  CAS  Google Scholar 

  10. He Z, Zhang H, Tewolde H, Shankle M (2017) Chemical characterization of cotton plant parts for multiple uses. Agric Environ Lett 2:110044. https://doi.org/10.2134/AEL2016.11.0044

    Article  Google Scholar 

  11. Ren J, Li N, Li L et al (2015) Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresour Technol 178:119–125. https://doi.org/10.1016/j.biortech.2014.09.071

    Article  CAS  PubMed  Google Scholar 

  12. Dhar M, Krishna PV, Roy S (2010) Manual on better management practices for cotton cultivation: a guide on sustainable cotton production. WWF-India, Lodi Estate, New Delhi. http://awsassets.wwfindia.org/downloads/better_management_practices_for_cotton_cultivation.pdf Accessed 20 August 2022

  13. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne J (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98:3000–3011. https://doi.org/10.1016/j.biortech.2006.10.022

  14. Jackson ML (1973) Soil chemical analysis. Prentice Hall India Pvt. Ltd., New Delhi

  15. Zhang X, Chen Y (2017) Soil disturbance and cutting forces of four different sweeps for mechanical weeding. Soil Tillage Res 168:167–175. https://doi.org/10.1016/j.still.2017.01.002

    Article  Google Scholar 

  16. Sutaria GS, Vora VD, Vekaria PD, Akbari KN (2016) Technology for rapid composting of cotton stalk. Int J Agric Sci Res 6:211–216

    Google Scholar 

  17. Mishra A, Singh SRK, Singh A, Borker J, Gour S (2016) Inventory on women friendly tools. ICAR-ATARI, Jabalpur, India. http://www.zpd7icar.nic.in/download/Inventory on Women Friendly Tool.pdf Accessed 21 August 2022

  18. Kotwaliwale N, Badegaonkar UR, Saxena CK, Chakraborty SK, Saha KP, Jena PC, Magar AP, Sawant C (2017) Annual report, 2016–17. ICAR-Central Institute of Agricultural Engineering, Bhopal, India. https://ciae.icar.gov.in/publications/annual-report Accessed 21 August 2022

  19. Kemp DC, Matthew M (1982) The development of cotton stalks pulling machines. J Agric Eng Res 27:201–213. https://doi.org/10.1016/0021-8634(82)90062-2

    Article  Google Scholar 

  20. Sumner HR, Monroe GE, Hellwig RE (1984) Design elements of cotton plant puller. Trans ASAE 27:0366–0369. https://doi.org/10.13031/2013.32792

    Article  Google Scholar 

  21. Sumner HR, Monroe GE, Hellwig RE (1987) Puller for cotton plant stubble. Energy Agric 6:153–165. https://doi.org/10.1016/0167-5826(87)90013-1

    Article  Google Scholar 

  22. Majumdar G (2007) Mechanization of colton produclion. http://tmc.cicr.org.in/pdf/2.3-07-08.pdf. Accessed 17 Sep 2020

  23. Ramadan Y (2010) Development and evaluation of a cotton stalk puller. J Soil Sci Agric Eng 1:1061–1073. https://doi.org/10.21608/jssae.2010.75470

    Article  Google Scholar 

  24. Kathirvel K, Reddy A, Manian R and Senthilkumar T (2004) Performance evaluation of implements for incorporation of cotton stalks. In: In Proc XXXVIII Annual convention of ISAE,. Dapoli, p 110 https://www.researchgate.net/publication/283381654_Performance_evaluation_of_implements_for_incorporation_of_cotton_stalk Accessed 21 Sep 2022

  25. Bharambe PR, Tajuddin AH, Oza SR, Shelke DK (2002) Effect of irrigation and crop residue management on crop and soil productivity under soybean-sorghum cropping system. J Indian Soc Soil Sci 50:233–236

    Google Scholar 

  26. Thangavel P, Prabakaran J (2003) Exploring the possibility of crop production in magnetite mine spoils with amendments. Adv Plant Sci 16:155–160

    Google Scholar 

  27. Senthilkumar T, Manian R, Kathirvel K (2009) Development and performance evaluation of a tractor operated cotton stalk shredder cum insitu applicator. AMA Agric Mech Asia Africa Lat Am 40:65–67

    Google Scholar 

  28. Saǧlam C, Kaplan F, Polat R (2010) A study on the chopping and mixing of cotton stalks with soil. African J Biotechnol 9:4764–4775. https://doi.org/10.5897/AJB10.409

    Article  Google Scholar 

  29. Ahmad F, Jamil MT, Khan AA et al (2020) Field performance evaluation and finite element simulation of cotton stalk puller-shredder: a sustainable mechanical solution to control pink bollworm (pectinophora gossypiella). Sustain 12:3407. https://doi.org/10.3390/SU12083407

    Article  Google Scholar 

  30. Vaghadia VR, Kathiria RK, Vavaliya PN, Savani JB (2015) Performance evaluation of shredder for agricultural wastes. AGRES An Int e-Journal 4:242–248. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  31. Solanki HB, Yadav R (2009) Development and performance evaluation of tractor operated plant uprooter for castor crop. AMA, Agric Mech Asia, Africa Lat Am 40:41–46

    Google Scholar 

  32. Gadir E (2013) Development of tractor operated cotton stalk puller. Am J Exp Agric 3:495–505. https://doi.org/10.9734/ajea/2013/2568

    Article  Google Scholar 

  33. Sarkari MR, Minaee S (2008) Evaluation of a cotton stalk puller performance. Am J Sustain Agric 2:19–24

    Google Scholar 

  34. Murugesan R, Shukla SK, Patil PG, Arude VG (2005) Design and development of tractor-drawn cotton stalk puller cum chipper. Agric Eng Today 28:1–6

    Google Scholar 

  35. Mahmood-ul-Hassan M, Rafique E, Rashid A (2013) Physical and hydraulic properties of aridisols as affected by nutrient and crop-residue management in a cotton-wheat system. Acta Sci Agron 35:127–137. https://doi.org/10.4025/actasciagron.v35i1.14683

    Article  CAS  Google Scholar 

  36. Singh Y, Singh B, Timsina J (2005) Crop residue management for nutrient cycling and improving soil productivity in rice-based cropping systems in the tropics. Adv Agron 85:269–407. https://doi.org/10.1016/S0065-2113(04)85006-5

    Article  CAS  Google Scholar 

  37. Pandey A, Soccol CR, Nigam P et al (2000) Biotechnological potential of agro-industrial residues. II: Cassava bagasse. Bioresour Technol 74:81–87. https://doi.org/10.1016/S0960-8524(99)00143-1

    Article  CAS  Google Scholar 

  38. Vellaichamy M, Saxena AK (2020) Fermentation technology: a viable tool for bio-conversion of lignocellulosic biomass into value-added products. Int J Curr Microbiol Appl Sci 9:1747–1762. https://doi.org/10.20546/ijcmas.2020.907.201

    Article  CAS  Google Scholar 

  39. Mageshwaran V, Ashtaputre NM, Hasan H, Monga D, Shukla SK, Patil PG (2015) A rapid process of preparation of bioenriched compost from cotton stalks. In: In National Symposium on “Future Technologies : Indian Cotton in the Next Decade” December 17–19, 2015 at Acharya Nagarjuna University, Guntur - 522 510. pp 469–478. http://www.crdaindia.com/downloads/files/n5717312adda33.pdf Accessed 16 August 2022

  40. Cao Z, Zhang S, Wang C et al (2019) Investigation on the physical properties of the charcoal briquettes prepared from wood sawdust and cotton stalk. Energy Sources, Part A Recover Util Environ Eff 41:493–500. https://doi.org/10.1080/15567036.2018.1520332

    Article  CAS  Google Scholar 

  41. Karunanithy C, Wang Y, Muthukumarappan K, Pugalendhi S (2012) Physiochemical characterization of briquettes made from different feedstocks. Biotechnol Res Int 2012:12. https://doi.org/10.1155/2012/165202

    Article  CAS  Google Scholar 

  42. Rajkumar D, Venkatachalam P (2013) Physical properties of agro residual briquettes produced from Cotton, soybean and pigeon pea stalks. Int J Power Eng Energy (IJPEE) 4:414–417

    Google Scholar 

  43. Ali N, Saleem M, Shahzad K, Chughtai A (2015) Bio-oil production from fast pyrolysis of cotton stalk in fluidized bed reactor. Arab J Sci Eng 40:3019–3027. https://doi.org/10.1007/s13369-015-1801-z

    Article  CAS  Google Scholar 

  44. Saleem M, Saleem RM, Ali N, Shahzad K (2018) Pyrolysis of cotton stalk in fixed bed reactor: effect of particle size of feedstock on bio-oil yield. NFC IEFR J Eng Sci Res 6:142–147

    Google Scholar 

  45. Xie Y, Zeng K, Flamant G et al (2019) Solar pyrolysis of cotton stalk in molten salt for bio-fuel production. Energy 179:1124–1132. https://doi.org/10.1016/j.energy.2019.05.055

    Article  CAS  Google Scholar 

  46. Zheng JL, Ming Yi W, Wang NN (2008) Bio-oil production from cotton stalk. Energy Convers Manag 49:1724–1730. https://doi.org/10.1016/j.enconman.2007.11.005

    Article  CAS  Google Scholar 

  47. Al Afif R, Anayah SS, Pfeifer C (2019) Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. In: E3S Web of Conferences 116, 00001. https://doi.org/10.1051/e3sconf/201911600001

  48. Hamawand I, Sandell G, Pittaway P, Chakrabarty S, Yusaf T, Chen G, Seneweera S, Al-Lwayzy S, Bennett J, Hopf J (2016) Bioenergy from cotton industry wastes: a review and potential. Renew Sust Energ Rev 66:435–448. https://doi.org/10.1016/j.rser.2016.08.033

    Article  CAS  Google Scholar 

  49. Schaffer S, Pröll T, Al Afif R, Pfeifer C (2019) A mass- and energy balance-based process modelling study for the pyrolysis of cotton stalks with char utilization for sustainable soil enhancement and carbon storage. Biomass Bioenerg 120:281–290. https://doi.org/10.1016/j.biombioe.2018.11.019

    Article  CAS  Google Scholar 

  50. Stucley CR, Schuck SM, Sims REH, Larsen PL, Turvey ND, Marino BE (2004) Biomass energy production in Australia: status, costs and opportunities for major technologiese. Canberra , Australia. https://www.agrifutures.com.au/wp-content/uploads/publications/04-031.pdf. Accessed 22 August 2022

  51. Yang F, Qing LEEX, Wang B (2015) Characterization of biochars produced from seven biomasses grown in three different climate zones. Chin J Geochem 34:592–600. https://doi.org/10.1007/s11631-015-0072-4

    Article  CAS  Google Scholar 

  52. Chen X, Liu H, Xia N et al (2015) Preparation and properties of oriented cotton stalk board with konjac glucomannan-chitosan-polyvinyl alcohol blend adhesive. BioResources 10:3736–3748. https://doi.org/10.15376/biores.10.2.3736-3748

    Article  CAS  Google Scholar 

  53. Guler C, Ozen R (2004) Some properties of particleboards made from cotton stalks (Gossypium hirsitum L.). Holz als Roh - und Werkst 62:40–43. https://doi.org/10.1007/s00107-003-0439-9

    Article  CAS  Google Scholar 

  54. Hossein K (2012) Utilization of bio-waste cotton (Gossypium hirsutum L.) stalks and underutilized paulownia (paulownia fortunie) in wood-based composite particleboard. African J Biotechnol 11:8045–8050. https://doi.org/10.5897/ajb12.288

    Article  Google Scholar 

  55. Kargarfard A (2018) The potential of cotton stalks utilization in particleboard production. Iran J Wood Pap Sci Res 32:463–472. https://doi.org/10.22092/IJWPR.2016.107065

    Article  Google Scholar 

  56. Nazerian M, Beygi Z, Mohebbi Gargari R, Kool F (2018) Application of response surface methodology for evaluating particleboard properties made from cotton stalk particles. Wood Mater Sci Eng 13:73–80. https://doi.org/10.1080/17480272.2017.1307280

    Article  CAS  Google Scholar 

  57. Philippou JL, Karastergiou SP (2001) Lignocellulosic materials from annual plants and agricultural residues as raw materials for composite building materials. In: K. Radoglou N-FRIT (ed) Proceedings of the International Conference: Forest Research: A Challenge For an Integrated European Approach. pp 817 – 822. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1079.9751&rep=rep1&type=pdf. Accessed 20 August 2022

  58. Rosario GA, Dela Cruz JV, Rosario MR, Cruz RS, Orpia ED Jr, Catedral IG (1998) Particleboard production from cotton stalks. Philipp J Crop Sci 23:54

    Google Scholar 

  59. Mobarak F, Nada AAM (1975) Fibreboard from exotic raw materials - hardboard from undebarked cotton stalks. J Appl Chem Biotechnol 25:659–662. https://doi.org/10.1002/jctb.5020250904

    Article  CAS  Google Scholar 

  60. Kargarfard A, Jahan-Latibari A (2011) The performance of corn and cotton stalks for medium density fiberboard production. BioResources 6:1147–1157. https://doi.org/10.15376/biores.6.2.1147-1157

    Article  CAS  Google Scholar 

  61. Fahmy TYA, Mobarak F (2013) Advanced binderless board-like green nanocomposites from undebarked cotton stalks and mechanism of self-bonding. Cellulose 20:1453–1457. https://doi.org/10.1007/s10570-013-9911-9

    Article  CAS  Google Scholar 

  62. Dundar A, Acay H, Yildiz A (2009) Effect of using different lignocellulosic wastes for cultivation of Pleurotus ostreatus (Jacq.) P. Kumm. on mushroom yield, chemical composition and nutritional value. African J Biotechnol 8:662–666. https://doi.org/10.5897/AJB2009.000-9112

    Article  CAS  Google Scholar 

  63. Hadar Y, Kerem Z, Gorodecki B, Ardon O (1992) Utilization of lignocellulosic waste by the edible mushroom, Pleurotus. Biodegradation 3:189–205. https://doi.org/10.1007/BF00129083

    Article  CAS  Google Scholar 

  64. Mageshwaran V, Satankar V, Hasan H, Shukla SK, Patil PG (2017) Compost production and Oyster mushroom cultivation – a potential entrepreneurship for cotton growing farmers. Int J For Crop Improv 8:149–156. https://doi.org/10.15740/has/ijfci/8.2/149-156

    Article  Google Scholar 

  65. Balasubramanya RH (2007) Edible oyster mushrooms on cotton plant stalk. ICAR-Central Institute for Research on Cotton Technology, Mumbai. https://www.cicr.org.in/research_notes/oyster_mushrooms.pdf. Accessed 22 August 2022

  66. Tsegaye Z, TeferaG, (2017) Cultivation of oyster mushroom (Pleurotusostreatus Kumm, 1871) using agro-industrial residues article information. J Appl Microbiol Res 1:15–20

    Google Scholar 

  67. Tupatkar PN, Jadhao SM (2006) Effect of different substrates on yield of oyster mushroom (Pleurotussajorcaju). Agric Sci Dig 26:224–226

    Google Scholar 

  68. Chari M (2013) Evaluation of quality and nutrient status of enriched compost. IOSR J Agric Vet Sci 6:19–23. https://doi.org/10.9790/2380-0621923

    Article  Google Scholar 

  69. El-Sharawy MAO, Aziz MA, Laila A, Ali KM (2003) The effect of the application of plant residues composts on some soil properties and yield of wheat and corn plants. Egypt J Soil Sci 43:421–434

    CAS  Google Scholar 

  70. Mathan KK (1999) Physical changes induced by mineral, organic and industrial amendments on a vertisol and its effect on yield of finger millet (Eleusine coracana Geartn.). Madras Agric J 86:546–549

    Google Scholar 

  71. Seoudi OA-T (2013) Enhancement of cotton stalks composting with certain microbial inoculations. J Adv Lab Res Biol 4:26–35

    Google Scholar 

  72. Akgül M, Tozluoǧlu A (2009) A comparison of soda and soda-AQ pulps from cotton stalks. African J Biotechnol 8:6127–6133. https://doi.org/10.5897/ajb09.301

    Article  Google Scholar 

  73. Khider TO (2012) Suitability of sudanese cotton stalks for alkaline pulping with additives. Iran J Energy Environ 3:167–172. https://doi.org/10.5829/idosi.ijee.2012.03.02.0228

    Article  Google Scholar 

  74. Pandey SN, Shaikh AJ (1987) Utilisation of cotton plant stalk for production of pulp and paper. Biol Wastes 21:63–70. https://doi.org/10.1016/0269-7483(87)90147-9

    Article  CAS  Google Scholar 

  75. Shaikh AJ, Sundaram V (1988) Corrugated boxes from cotton stalks. Indian Farming 38:36–37

    Google Scholar 

  76. Baig MZ, Dharmadhikari SM, Ismail S (2017) Potential of ethanol production from cotton stalk: a review. Int J Recent Sci Res 8:19560–19563. https://doi.org/10.24327/ijrsr.2017.0808.0719

    Article  Google Scholar 

  77. Chilari D, Dimos K, Georgoula G et al (2017) Bioethanol production from alkali-treated cotton stalks at high solids loading applying non-isothermal simultaneous saccharification and fermentation. Waste Biomass Valorization 8:1919–1929. https://doi.org/10.1007/s12649-016-9818-4

    Article  CAS  Google Scholar 

  78. Dimos K, Paschos T, Louloudi A et al (2019) Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5:12. https://doi.org/10.3390/fermentation5010005

    Article  CAS  Google Scholar 

  79. Jiang W, Chang S, Li H, Oleskowicz-Popiel P (2014) Liquid hot water pretreatment on different parts of cotton stalk to facilitate ethanol production. Bioresour Technol 176:175–180. https://doi.org/10.1016/j.biortech.2014.11.023

    Article  CAS  PubMed  Google Scholar 

  80. Keshav PK, Naseeruddin S, Rao LV (2016) Improved enzymatic saccharification of steam exploded cotton stalk using alkaline extraction and fermentation of cellulosic sugars into ethanol. Bioresour Technol 214:363–370. https://doi.org/10.1016/j.biortech.2016.04.108

    Article  CAS  PubMed  Google Scholar 

  81. Pappis CP, Petrou EC (2011) Bioethanol production from cotton stalks or corn stover? A comparative study of their sustainability performance. In: Proceedings of the World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. https://ep.liu.se/ecp/057/vol1/021/ecp57vol1_021.pdf Accessed 17 August 2022

  82. Shahzad K, Sohail M, Hamid A (2019) Green ethanol production from cotton stalk. IOP Conf Ser Earth Environ Sci 257:12–25. https://doi.org/10.1088/1755-1315/257/1/012025

    Article  Google Scholar 

  83. Wang M, Zhou D, Wang Y et al (2016) Bioethanol production from cotton stalk: a comparative study of various pretreatments. Fuel 184:527–532. https://doi.org/10.1016/j.fuel.2016.07.061

    Article  CAS  Google Scholar 

  84. Reddy N, Yang Y (2015) Innovative biofibers from renewable resources. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45136-6

  85. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90:21–50. https://doi.org/10.1016/j.fuproc.2008.07.012

    Article  CAS  Google Scholar 

  86. Al Afif R, Pfeifer C, Pröll T (2019) Bioenergy recovery from cotton stalk. In: Mahmood-ur-Rahman Ansari (ed) Advances in Cotton Research. IntechOpen, pp 1–19 https://doi.org/10.5772/intechopen.88005

  87. Tripathi AK, Iyer PVR, Kandpal TC, Singh KK (1998) Assessment of availability and costs of some agricultural residues used as feedstocks for biomass gasification and briquetting in India. Energy Convers Manag 39:1611–1618. https://doi.org/10.1016/S0196-8904(98)00030-2

    Article  Google Scholar 

  88. Patil G (2019) Possibility study of briquetting agricultural wastes for alternative energy. Indones J For Res 6:133–139. https://doi.org/10.20886/ijfr.2019.6.2.133-139

    Article  Google Scholar 

  89. Sheng KC, El-Behery A, Gomaa H (1999) Experimental studies on chopping cotton stalks and the briquetting process. Trans Chinese Soc Agric Eng 15:221–225

    Google Scholar 

  90. Al Afif R, Anayah SS, Pfeifer C (2020) Batch pyrolysis of cotton stalks for evaluation of biochar energy potential. Renew Energy 147:2250–2258. https://doi.org/10.1016/j.renene.2019.09.146

    Article  CAS  Google Scholar 

  91. Cheng J, Hu SC, Sun GT et al (2021) The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Ind Crops Prod 170:113690. https://doi.org/10.1016/j.indcrop.2021.113690

    Article  CAS  Google Scholar 

  92. Çetin YD, Durusoy T (2017) Co-combustion characteristics and kinetics of cotton stalk and polypropylene blends. Am J Anal Chem 08:280–293. https://doi.org/10.4236/ajac.2017.84021

    Article  CAS  Google Scholar 

  93. Raju NP, Raju M (2019) Experimental study of cotton stalk pellet renewable energy potential from agricultural residue woody biomass as an alternate fuel for fossil fuels to internal combustion engines. Int J Eng Res Technol 8:746–750. https://doi.org/10.17577/IJERTV8IS090168

    Article  Google Scholar 

  94. Gupta A, Thengane SK, Mahajani S (2020) Kinetics of pyrolysis and gasification of cotton stalk in the central parts of India. Fuel 263:116752. https://doi.org/10.1016/j.fuel.2019.116752

    Article  CAS  Google Scholar 

  95. Karthyani S, Pandey A, Devendra LP (2020) Delignification of cotton stalks using sodium cumene sulfonate for bioethanol production. Biofuels 11:431–440. https://doi.org/10.1080/17597269.2017.1370884

    Article  CAS  Google Scholar 

  96. Karacan CÖ, Olea RA (2018) Mapping of compositional properties of coal using isometric log-ratio transformation and sequential Gaussian simulation – a comparative study for spatial ultimate analyses data. J Geochemical Explor 186:36–49. https://doi.org/10.1016/J.GEXPLO.2017.11.022

    Article  CAS  Google Scholar 

  97. Patil P, Gurjar R, Shaikh A (2007) Cotton plant stalk - an alternate raw material to board industry. In: The World Cotton Research Conference-4 (September 10–14, 2007) Lubbock, TX. https://wcrc.confex.com/wcrc/2007/techprogram/P1506.HTM Accessed 21 August 2022

  98. Gencer A, Eroglu H, Ozen R (2001) Medium density fibreboard manufacturing from cotton stalks. A Publ Wood Pulp Pap Ind 5:26–28

    Google Scholar 

  99. da Silva JE, de Araújo Melo DM, de Freitas Melo MA et al (2019) Energetic characterization and evaluation of briquettes produced from naturally colored cotton waste. Environ Sci Pollut Res 26:14259–14265. https://doi.org/10.1007/s11356-019-04777-z

    Article  CAS  Google Scholar 

  100. Ahmad Z, Al DWW, Paleologou M, Xu C (2020) Sustainable process for the depolymerization/oxidation of softwood and hardwood kraft lignins using hydrogen peroxide under ambient conditions. Molecules 25:1–19. https://doi.org/10.3390/molecules25102329

    Article  CAS  Google Scholar 

  101. Shaikh AJ, Patil PG, Shukla SK, Mageshwaran V, Ambre MG (2018) Supply chain and value addition of cotton byproducts in Asia © Indian Society for Cotton Improvement Supply Chain and Value Addition of Cotton Byproducts in Asia. Cott Res J 9:14–19

    Google Scholar 

  102. Dahake AB, Patil PG (2017) Production of particle boards from cotton stalks-an eco-friendly way of biomass utilization. Agric Eng Today 41:32–35

    Google Scholar 

  103. Chbib H, Samy I, Azouz M (2019) The economic potential of using cotton stalks to produce alternative wooden materials. Proceedings of NILES 2019 - Nov Intell Lead Emerg Sci Conf, Giza, Egypt, pp 25–28. https://doi.org/10.1109/NILES.2019.8909340

  104. Tolera KD, Abera S (2017) Nutritional quality of oyster mushroom (Pleurotus Ostreatus) as affected by osmotic pretreatments and drying methods. Food Sci Nutr 5:989–996. https://doi.org/10.1002/fsn3.484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sardar A, Satankar V, Jagajanantha P, Mageshwaran V (2020) Effect of substrates (cotton stalks and cotton seed hulls) on growth, yield and nutritional composition of two oyster mushrooms (Pleurotus ostreatus and Pleurotus florida). J Cotton Res Dev 34:135–145

    Google Scholar 

  106. Rajavat AS, Mageshwaran V, Bharadwaj A et al (2022) Spent mushroom waste: an emerging bio-fertilizer for improving soil health and plant productivity. In: Singh HB, Vaishnav A(ed) New and future developments in microbial biotechnology and bio-engineering, Sustainable agriculture: revitalization through organic products, Elsevier, pp 345–354. https://doi.org/10.1016/B978-0-323-85579-2.00010-1

  107. Gajdos R (1992) The use of organic waste materials as organic fertilizers - recycling of plant nutrients. Acta Hortic 302:325–334. https://doi.org/10.17660/actahortic.1992.302.30

    Article  Google Scholar 

  108. Rebollido R, Martínez J, Aguilera Y et al (2008) Microbial populations during composting process of organic fraction of municipal solid waste. Appl Ecol Environ Res 6:61–67. https://doi.org/10.15666/aeer/0603_061067

    Article  Google Scholar 

  109. Kranz CN, McLaughlin RA, Johnson A, Miller G, Heitman JL (2020) The effects of compost incorporation on soil physical properties in urban soils – a concise review. J Environ Manage 261:1–10. https://doi.org/10.1016/j.jenvman.2020.110209

    Article  Google Scholar 

  110. Velmourougane K, Manikandan A, Blaise D, Vellaichamy M (2022) Cotton stalk compost as a substitution to farmyard manure along with mineral fertilizers and microbials enhanced Bt cotton productivity and fibre quality in rainfed vertisols. Waste and Biomass Valorization 13:2847–2860. https://doi.org/10.1007/s12649-022-01689-x

    Article  CAS  Google Scholar 

  111. Hasan H, Sardar A, Ashtaputre NM, Mageshwaran V (2020) Storability of bio enriched compost prepared from cotton stalks. J Cott Res Dev 34:301–308

    Google Scholar 

  112. Tutus A, Ezici AC, Ates S (2010) Chemical, morphological and anatomical properties and evaluation of cotton stalks (Gossypium Hirsutum L.) in pulp industry. Sci Res Essays 5:1553–1560. https://doi.org/10.5897/SRE.9000265

    Article  Google Scholar 

  113. Madakadze IC, Radiotis T, Li J et al (1999) Kraft pulping characteristics and pulp properties of warm season grasses. Bioresour Technol 69:75–85. https://doi.org/10.1016/S0960-8524(98)00131-X

    Article  CAS  Google Scholar 

  114. Erana L (2021) Pulp production from cotton stalks. J Text Eng Fash Technol 3:23–28. https://doi.org/10.33140/jteft.03.01.01

    Article  Google Scholar 

  115. Dien BS, Iten LB, Bothast RJ (1999) Conversion of corn fiber to ethanol by recombinant E. coli strain FBR3. J Ind Microbiol Biotechnol 22:575–581. https://doi.org/10.1038/sj.jim.2900628

    Article  CAS  PubMed  Google Scholar 

  116. Abril D, Abril A (2009) Ethanol from lignocellulosic biomass. Cienc e Investig Agrar 36:177–190. https://doi.org/10.4067/S0718-16202009000200003

    Article  Google Scholar 

  117. Kang Q, Appels L, Tan T, Dewil R (2014) Bioethanol from lignocellulosic biomass: Current findings determine research priorities. Sci World J 2014:13. https://doi.org/10.1155/2014/298153

    Article  Google Scholar 

  118. Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295. https://doi.org/10.1016/j.biortech.2007.11.013

    Article  CAS  PubMed  Google Scholar 

  119. Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agro-residues: a review. Renew Sustain Energy Rev 41:550–567. https://doi.org/10.1016/j.rser.2014.08.032

    Article  CAS  Google Scholar 

  120. Haq F, Ali H, Shuaib M et al (2016) Recent progress in bioethanol production from lignocellulosic materials: A review. Int J Green Energy 13:1413–1441. https://doi.org/10.1080/15435075.2015.1088855

    Article  CAS  Google Scholar 

  121. Bušić A, Mardetko N, Kundas S et al (2018) Bioethanol production from renewable raw materials and its separation and purification: a review. Food Technol Biotechnol 56:289–311. https://doi.org/10.17113/ftb.56.03.18.5546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nupur D, Himani P, Varsha S et al (2020) Simultaneous bioethanol production and lignin and cellulose fractionation from cotton stalks: a bio-refinery approach. Res J Biotechnol 15:30–38

    CAS  Google Scholar 

  123. Sharma A, Jakhete A, Sharma A et al (2019) Lowering greenhouse gas (GHG) emissions: techno-economic analysis of biomass conversion to biofuels and value-added chemicals. Greenh Gases Sci Technol 9:454–473. https://doi.org/10.1002/ghg.1867

    Article  Google Scholar 

  124. Arude VG, Shukla SK, Patil PG, Deshmukh PS (2019) Sustainable development in cotton sector through industrial applications of value added products from cotton stalk cotton stalk supply chain model for industrial applications. Cott Res J 10:47–52 http://epubs.icar.org.in/ejournal/index.php/CoRJ/login?source=%2Fejournal%2Findex.php%2FCoRJ%2Farticle%2Fview%2F114039%2F44407

  125. Dobariya UD, Sarsavadiya PN (2016) Experimental investigation and techno economic analysis of open core gasifier by using shredded cotton stalk as feedstock. Curr World Environ 11:312–324. https://doi.org/10.12944/cwe.11.1.38

    Article  Google Scholar 

  126. Binod P, Kuttiraja M, Archana M et al (2012) High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel 92:340–345. https://doi.org/10.1016/J.FUEL.2011.07.044

    Article  CAS  Google Scholar 

  127. Ramachandra TV, Hebbale D (2020) Bioethanol from macroalgae: prospects and challenges. Renew Sustain Energy Rev 117:109479. https://doi.org/10.1016/J.RSER.2019.109479

    Article  CAS  Google Scholar 

  128. Keshav P, Banoth C, Kethavath S, Bhukya B (2021) Lignocellulosic ethanol production from cotton stalk: an overview on pretreatment, saccharification and fermentation methods for improved bioconversion process. Biomass Convers Biorefin 1–17. https://doi.org/10.1007/s13399-021-01468-z

Download references

Funding

This research was supported by the Central Institute of Agricultural Engineering, Bhopal; Central Institute of Cotton Research, Nagpur; Central Institute for Research on Cotton Technology, Mumbai and Indian Institute of soil Sciences, Bhopal institute under Indian Council of Agricultural Research (ICAR), New Delhi.

Author information

Authors and Affiliations

Authors

Contributions

Ashutosh P. Pandirwar: conceptualization, investigation, writing — original draft, editing. Abhijit Khadatkar: conceptualization, writing — review & editing. CR Mehta: conceptualization, editing & supervision. Gautam Majumdar: writing — review & editing. Ramkrushna Idapuganti: writing — review & editing. Vellaichamy Mageshwaran: writing — review & editing. Abhay O Shirale: investigation, writing.

Corresponding author

Correspondence to Ashutosh P. Pandirwar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandirwar, A.P., Khadatkar, A., Mehta, C.R. et al. Technological Advancement in Harvesting of Cotton Stalks to Establish Sustainable Raw Material Supply Chain for Industrial Applications: a Review. Bioenerg. Res. 16, 741–760 (2023). https://doi.org/10.1007/s12155-022-10520-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10520-3

Keywords

Navigation