Skip to main content

Advertisement

Log in

Effectiveness of Wheat Straw Biochar in Aqueous Zn Removal: Correlation with Biochar Characteristics and Optimization of Process Parameters

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The adsorption performance of biochar was investigated for the removal of Zn from the aqueous solution. Biochar was produced from three different feedstock: groundnut shell, chickpea straw, and wheat straw using a fixed bed pyrolysis reactor at three different pyrolysis temperatures of 500, 550, and 600 °C for 1 h. The biomass and biochar characterization was performed to examine the elementary composition, surface morphology, and functional group. The response surface methodology with a Box–Behnken design was applied to understand the influence of biochar dose, heavy metal concentration, and contact period on the removal efficiency of Zn from an aqueous solution. The influence of biochar dose and contact time had the most remarkable effect on Zn adsorption. As biochar dose increased from 1 to 3 g/L and contact time from 60 to 180 min, the Zn removal efficiency was found correspondingly increased from 26 to 97%, respectively. The optimum conditions found for the maximum Zn removal are 2.90 g/L biochar dosage, 22 ppm heavy metal concentration, and 309 min contact period were the key parameters to achieve maximum Zn removal efficiency for wheat straw biochar to be around 97.16%. The present experimental investigation concluded that biochar derived from lignocellulosic biomass creates a new window for the appropriate utilization of environmentally friendly adsorbent in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable to this work.

References

  1. Singh, R, Bisaria, K, Chugh, P, Batra, L, Sinha, S (2021) Agricultural waste: a potential solution to combat heavy metal toxicity. In: Gothandam, KM, Srinivasan, R, Ranjan, S, Dasgupta, N, Lichtfouse, E (ed) Environmental Biotechnology. Environmental Chemistry for a Sustainable World. Springer, Cham, pp 101–124. https://doi.org/10.1007/978-3-030-77795-1_4

  2. Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwarzenbach RP, Egli T, Hofstetter TB et al (2010) Global Water Pollution and Human Health. Annu Rev Environ Resour 35:109–136. https://doi.org/10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  4. Elwakeel KZ, Elgarahy AM, Khan ZA et al (2020) Perspectives regarding metal/mineral-incorporating materials for water purification: with special focus on Cr removal. Mater Adv 1:1546–1574. https://doi.org/10.1039/D0MA00153H

    Article  CAS  Google Scholar 

  5. Panwar NL, Pawar A, Salvi BL (2019) Comprehensive review on production and utilization of biochar. SN Appl Sci 1:168. https://doi.org/10.1007/s42452-019-0172-6

    Article  CAS  Google Scholar 

  6. Zhou Y, Qin S, Verma S et al (2021) Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresour Technol 337:125451. https://doi.org/10.1016/j.biortech.2021.125451

    Article  CAS  PubMed  Google Scholar 

  7. Hiloidhari M, Das D, Baruah DC (2014) Bioenergy potential from crop residue biomass in India. Renew Sustain Energy Rev 32:504–512. https://doi.org/10.1016/j.rser.2014.01.025

    Article  Google Scholar 

  8. Mishra A, Kumar A, Ghosh S (2018) Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario. Biotech 8:142. https://doi.org/10.1007/s13205-018-1135-0

    Article  Google Scholar 

  9. Augustine MA, Singh VCJ, Sekhar SJ (2021) Spent tea waste as a biomass for co-gasification enhances the performance of semi-industrial gasifier working on groundnut shell. Biomass Bioenergy 145:105964. https://doi.org/10.1016/j.biombioe.2021.105964

    Article  Google Scholar 

  10. Maurya O, Kumar H (2018) Growth of chickpea production in India. J pharmacogn phytoch 7:1175–1177

    CAS  Google Scholar 

  11. Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  CAS  PubMed  Google Scholar 

  12. Gonzaga MIS, Mackowiak CL, Comerford NB et al (2017) Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition. Soil Tillage Res 165:59–65. https://doi.org/10.1016/j.still.2016.07.009

    Article  Google Scholar 

  13. Frišták V, Friesl-Hanl W, Wawra A et al (2015) Effect of biochar artificial ageing on Cd and Cu sorption characteristics. J Geochem Explor 159:178–184. https://doi.org/10.1016/j.gexplo.2015.09.006

    Article  CAS  Google Scholar 

  14. Tak B, Tak B, Kim Y et al (2015) Optimization of color and COD removal from livestock wastewater by electrocoagulation process: application of Box-Behnken design (BBD). J Ind Eng Chem 28:307–315. https://doi.org/10.1016/j.jiec.2015.03.008

    Article  CAS  Google Scholar 

  15. Ahmad M, Lee SS, Dou X et al (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. https://doi.org/10.1016/j.biortech.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  16. Kim W-K, Shim T, Kim Y-S et al (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270. https://doi.org/10.1016/j.biortech.2013.03.186

    Article  CAS  PubMed  Google Scholar 

  17. Jindo K, Mizumoto H, Sawada Y et al (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621. https://doi.org/10.5194/bg-11-6613-2014

    Article  Google Scholar 

  18. Vyas D, Sayyad F, Khardiwar M, Kumar S (2015) Physicochemical Properties of Briquettes from Different Feed Stock. Curr World Environ. 10:263–269. https://doi.org/10.12944/CWE.10.1.32

    Article  Google Scholar 

  19. Leng S, Li W, Han C et al (2020) Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: a comparison study. Bioresour Technol 298:122502. https://doi.org/10.1016/j.biortech.2019.122502

    Article  CAS  PubMed  Google Scholar 

  20. Galhano dos Santos R, Bordado JC, Mateus MM (2018) Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel 221:72–77. https://doi.org/10.1016/j.fuel.2018.02.092

    Article  CAS  Google Scholar 

  21. Sun J, Lian F, Liu Z et al (2014) Biochars derived from various crop straws: Characterization and Cd(II) removal potential. Ecotoxicol Environ Saf 106:226–231. https://doi.org/10.1016/j.ecoenv.2014.04.042

    Article  CAS  PubMed  Google Scholar 

  22. Rehrah D, Reddy MR, Novak JM et al (2014) Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J Anal Appl Pyrolysis 108:301–309. https://doi.org/10.1016/j.jaap.2014.03.008

    Article  CAS  Google Scholar 

  23. Zhao M, Dai Y, Zhang M et al (2020) Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci Total Environ 717:136894. https://doi.org/10.1016/j.scitotenv.2020.136894

    Article  CAS  PubMed  Google Scholar 

  24. Panwar NL, Pawar A (2022) Influence of activation conditions on the physicochemical properties of activated biochar: a review. Biomass Convers Biorefin 12:925–947. https://doi.org/10.1007/s13399-020-00870-3

    Article  CAS  Google Scholar 

  25. Lee JW, Kidder M, Evans BR et al (2010) Characterization of Biochars Produced from Cornstovers for Soil Amendment. Environ Sci Technol 44:7970–7974. https://doi.org/10.1021/es101337x

    Article  CAS  PubMed  Google Scholar 

  26. Uchimiya M, Wartelle LH, Lima IM, Klasson KT (2010) Sorption of Deisopropylatrazine on Broiler Litter Biochars. J Agric Food Chem 58:12350–12356. https://doi.org/10.1021/jf102152q

    Article  CAS  PubMed  Google Scholar 

  27. Thommes M, Kaneko K, Neimark AV et al (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  28. Ahmad M, Lee SS, Oh S-E et al (2013) Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environ Sci Pollut Res 20:8364–8373. https://doi.org/10.1007/s11356-013-1676-z

    Article  CAS  Google Scholar 

  29. Nascimento PFP, Sousa JF, Oliveira JA et al (2017) Wood sawdust and sewage sludge pyrolysis chars for CO 2 adsorption using a magnetic suspension balance. Can J Chem Eng 95:2148–2155. https://doi.org/10.1002/cjce.22861

    Article  CAS  Google Scholar 

  30. Possa RD, Sousa JF, Oliveira JA et al (2018) Dynamic adsorption of H2S in a fixed bed of sewage sludge pyrolysis char. Braz J Pet Gas 12:77–90. https://doi.org/10.5419/bjpg2018-0008

    Article  Google Scholar 

  31. Nazari S, Rahimi G, Khademi Jolgeh Nezhad A (2019) Effectiveness of native and citric acid-enriched biochar of Chickpea straw in Cd and Pb sorption in an acidic soil. J Environ Chem Eng 7:103064. https://doi.org/10.1016/j.jece.2019.103064

    Article  CAS  Google Scholar 

  32. Tasim B, Masood T, Shah ZA et al (2019) Quality Evaluation of Biochar Prepared from Different Agricultural Residues. SJA 35:134–143. https://doi.org/10.17582/journal.sja/2019/35.1.134.143

    Article  Google Scholar 

  33. Zhang P, Sun H, Ren C et al (2018) Sorption mechanisms of neonicotinoids on biochars and the impact of deashing treatments on biochar structure and neonicotinoids sorption. Environ Pollut 234:812–820. https://doi.org/10.1016/j.envpol.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  34. Jiang B, Lin Y, Mbog JC (2018) Biochar derived from swine manure digestate and applied on the removals of heavy metals and antibiotics. Bioresour Technol 270:603–611. https://doi.org/10.1016/j.biortech.2018.08.022

    Article  CAS  PubMed  Google Scholar 

  35. Bhaduri D, Saha A, Desai D, Meena HN (2016) Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 148:86–98. https://doi.org/10.1016/j.chemosphere.2015.12.130

    Article  CAS  PubMed  Google Scholar 

  36. Mimmo T, Panzacchi P, Baratieri M et al (2014) Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 62:149–157. https://doi.org/10.1016/j.biombioe.2014.01.004

    Article  CAS  Google Scholar 

  37. Miller GP, Kintigh J, Kim E et al (2008) hydrogenation of single-wall carbon nanotubes using polyamine reagents: combined experimental and theoretical study. J Am Chem Soc 130:2296–2303. https://doi.org/10.1021/ja0775366

    Article  CAS  PubMed  Google Scholar 

  38. Chu G, Zhao J, Chen F et al (2017) Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environ Pollut 227:372–379. https://doi.org/10.1016/j.envpol.2017.04.067

    Article  CAS  PubMed  Google Scholar 

  39. Ghaffar A, Ghosh S, Li F et al (2015) Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates. Environ Pollut 206:502–509. https://doi.org/10.1016/j.envpol.2015.08.001

    Article  CAS  PubMed  Google Scholar 

  40. Özsin G, Kılıç M, Apaydın-Varol E, Pütün AE (2019) Chemically activated carbon production from agricultural waste of chickpea and its application for heavy metal adsorption: equilibrium, kinetic, and thermodynamic studies. Appl Water Sci 9:56. https://doi.org/10.1007/s13201-019-0942-8

    Article  CAS  Google Scholar 

  41. Qayyum MF, Steffens D, Reisenauer HP, Schubert S (2012) kinetics of carbon mineralization of biochars compared with wheat straw in three soils. J Environ Qual 41:1210–1220. https://doi.org/10.2134/jeq2011.0058

    Article  CAS  PubMed  Google Scholar 

  42. Mohanty P, Nanda S, Pant KK et al (2013) Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: Effects of heating rate. J Anal Appl Pyrolysis 104:485–493. https://doi.org/10.1016/j.jaap.2013.05.022

    Article  CAS  Google Scholar 

  43. Peterson SC, Jackson MA (2014) Simplifying pyrolysis: Using gasification to produce corn stover and wheat straw biochar for sorptive and horticultural media. Ind Crops Prod 53:228–235. https://doi.org/10.1016/j.indcrop.2013.12.028

    Article  CAS  Google Scholar 

  44. Song Y, Wang F, Bian Y et al (2012) Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J Hazard Mater 217–218:391–397. https://doi.org/10.1016/j.jhazmat.2012.03.055

    Article  CAS  PubMed  Google Scholar 

  45. Rahman N, Nasir M (2018) Application of Box-Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine) / hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies. Environ Sci Pollut Res 25:26114–26134. https://doi.org/10.1007/s11356-018-2566-1

    Article  CAS  Google Scholar 

  46. El-Ashtoukhy E-SZ, Amin NK, Abdelwahab O (2008) Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination 223:162–173. https://doi.org/10.1016/j.desal.2007.01.206

    Article  CAS  Google Scholar 

  47. Aydın H, Bulut Y, Yerlikaya Ç (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manage 87:37–45. https://doi.org/10.1016/j.jenvman.2007.01.005

    Article  CAS  PubMed  Google Scholar 

  48. Tsai W-T, Chen H-R (2013) Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int J Environ Sci Technol 10:1349–1356. https://doi.org/10.1007/s13762-012-0174-z

    Article  CAS  Google Scholar 

  49. Liu Z, Zhang F-S (2009) Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. J Hazard Mater 167:933–939. https://doi.org/10.1016/j.jhazmat.2009.01.085

    Article  CAS  PubMed  Google Scholar 

  50. Pellera F-M, Giannis A, Kalderis D et al (2012) Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by-products. J Environ Manage 96:35–42. https://doi.org/10.1016/j.jenvman.2011.10.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Indian Council of Agricultural Research (ICAR) for providing the research fund to carry out experimental work.

Author information

Authors and Affiliations

Authors

Contributions

Divyesh R. Vaghela carried out experimental work and wrote draft, Ashish Pawar was reviewed, and edited manuscript. Deepak sharma was examined and editd the manuscript.

Corresponding author

Correspondence to Ashish Pawar.

Ethics declarations

Ethics Approval

This work does not involve experiments using humans or other animals.

Consent to Participate

Approved.

Consent to Publish

Approved.

Competing Interests.

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghela, D.R., Pawar, A. & Sharma, D. Effectiveness of Wheat Straw Biochar in Aqueous Zn Removal: Correlation with Biochar Characteristics and Optimization of Process Parameters. Bioenerg. Res. 16, 457–471 (2023). https://doi.org/10.1007/s12155-022-10471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10471-9

Keywords

Navigation