Skip to main content
Log in

Influence of Antinutrients on Bacterial Growth and Bioethanol Production by Klebsiella sp. SWET4 Through Direct Fermentation of Fruit Wastes: a Novel Perspective for Substrate Selection

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The sustainability of bioethanol production depends on substrate selection. Since direct fermentation allows the interaction between antinutrients and microbes, antinutrient content becomes a crucial factor for substrate selection as these components possess growth inhibitory effects on sensitive microbes. This study demonstrated that the growth of Klebsiella sp. SWET4 had been significantly affected by antinutrients like phytate (3.09% reduction per µg‧mL−1), phenolic acid (0.222% reduction per µg‧mL−1), cyanide (0.376% reduction per µg‧mL−1), and tannin (0.038% reduction per µg‧mL−1). The correlation study of the effect of antinutrients on bacterial growth was further analyzed by principal component analysis (PCA) confirming the least growth inhibitory effect exhibited by banana peel as compared to other selected substrates. Based on the literature survey, genes or gene products that could be affected by selected antinutrient were successfully localized in the genome of SWET4, confirming the severe effect of these antinutrients on bacterial growth. The kinetic study of SWET4 also revealed the fact that ethanol production was growth-associated as derived from the Luedeking-Piret model, both in glucose supplemented and banana peel supplemented culture broths. This also implied that ethanol production was proportional to bacterial growth which can also be maximized in substrates containing the least antinutrients. Hence, for the selection of the best suitable substrates for bioethanol production by direct fermentation technique, the growth inhibitory components should be one of the principal criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vasić K, Knez Ž, Leitgeb M (2021) Bioethanol production by enzymatic hydrolysis from different lignocellulosic sources. Molecules 26:753. https://doi.org/10.3390/molecules26030753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bioethanol Market. Bioethanol market: global industry analysis 2013–2017 and opportunity assessment; 2018–2028. Future Market Insights. https://www.futuremarketinsights.com/reports/bioethanol-market. Accessed 10 Jan 2022

  3. Sarkar D, Gupta K, Poddar K, Biswas R, Sarkar A (2019) Direct conversion of fruit waste to ethanol using marine bacterial strain Citrobacter sp. E4. Process Saf Environ Prot 128:203–210. https://doi.org/10.1016/j.psep.2019.05.051

    Article  CAS  Google Scholar 

  4. Sarkar D, Prajapati S, Poddar K, Sarkar A (2020) Ethanol production by Klebsiella sp. SWET4 using banana peel as feasible substrate. Biomass Convers Biorefin 1–13. https://doi.org/10.1007/s13399-020-00880-1

  5. Tan JS, Phapugrangkul P, Lee CK, Lai ZW, Bakar MHA, Murugan P (2019) Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatal Agric Biotechnol 21:101293. https://doi.org/10.1016/j.bcab.2019.101293

    Article  Google Scholar 

  6. Pathak PD, Mandavgane SA, Kulkarni BD (2017) Fruit peel waste: characterization and its potential uses. Curr Sci 113:444–454. https://www.jstor.org/stable/26294001. Accessed 12 Jan 2022

  7. Chohan NA, Aruwajoye GS, Sewsynker-Sukai Y, Kana EG (2020) Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment. Renew Energy 146:1031–1040. https://doi.org/10.1016/j.renene.2019.07.042

    Article  CAS  Google Scholar 

  8. Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, Takenaka S, Chaiyaso T (2018) An integrated process for xylooligosaccharide and bioethanol production from corncob. Bioresour Technol 256:399–407. https://doi.org/10.1016/j.biortech.2018.02.004

    Article  CAS  PubMed  Google Scholar 

  9. Jugwanth Y, Sewsynker-Sukai Y, Kana EG (2020) Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: optimization and kinetic studies. Fuel 262:116552. https://doi.org/10.1016/j.fuel.2019.116552

    Article  CAS  Google Scholar 

  10. Sood SK, Rawat KS, Kumar D (2022) Analytical mapping of information and communication technology in emerging infectious diseases using CiteSpace. Telemat Inform 101796. https://doi.org/10.1016/j.tele.2022.101796

  11. Maity S, Biswas R, Sarkar A (2020) Comparative valuation of groundwater quality parameters in Bhojpur. Bihar for arsenic risk assessment Chemosphere 259:127398. https://doi.org/10.1016/j.chemosphere.2020.127398

    Article  CAS  PubMed  Google Scholar 

  12. Ayutthaya PPN, Charoenrat T, Krusong W, Pornpukdeewattana S (2019) Repeated cultures of Saccharomyces cerevisiae SC90 to tolerate inhibitors generated during cassava processing waste hydrolysis for bioethanol production. 3 Biotech 9:76. https://doi.org/10.1007/s13205-019-1607-x

    Article  Google Scholar 

  13. Chandel AK, Da Silva SS, Singh OV (2013) Detoxification of lignocellulose hydrolysates: biochemical and metabolic engineering toward white biotechnology. Bioenergy Res 6:388–401. https://doi.org/10.1007/s12155-012-9241-z

    Article  CAS  Google Scholar 

  14. Freitas C, Neves E, Reis A, Passarinho PC, Da Silva TL (2013) Use of multi-parameter flow cytometry as tool to monitor the impact of formic acid on Saccharomyces carlsbergensis batch ethanol fermentations. Appl Biochem Biotechnol 169:2038–2048. https://doi.org/10.1007/s12010-012-0055-4

    Article  CAS  PubMed  Google Scholar 

  15. Jayakody LN, Kadowaki M, Tsuge K, Horie K, Suzuki A, Hayashi N, Kitagaki H (2015) SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate. Appl Microbiol Biotechnol 99:501–515. https://doi.org/10.1007/s00253-014-6174-9

    Article  CAS  PubMed  Google Scholar 

  16. Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, Kana EG (2019) Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production. Bioresour Technol 286:121403. https://doi.org/10.1016/j.biortech.2019.121403

    Article  CAS  PubMed  Google Scholar 

  17. Abdullah SSS, Shirai Y, Bahrin EK, Hassan MA (2015) Fresh oil palm frond juice as a renewable, non-food, non-cellulosic and complete medium for direct bioethanol production. Ind Crops Prod 63:357–361. https://doi.org/10.1016/j.indcrop.2014.10.006

    Article  CAS  Google Scholar 

  18. Aruna A, Nagavalli M, Girijashankar V, Ponamgi SPD, Swathisree V, Venkateswar Rao L (2015) Direct bioethanol production by amylolytic yeast Candida albicans. Lett Appl Microbiol 60:229–236. https://doi.org/10.1111/lam.12348

    Article  CAS  PubMed  Google Scholar 

  19. Gil LS, Maupoey PF (2018) An integrated approach for pineapple waste valorisation. Bioethanol production and bromelain extraction from pineapple residues. J Clean Prod 172:1224–1231. https://doi.org/10.1016/j.jclepro.2017.10.284

    Article  CAS  Google Scholar 

  20. Kamei I, Uchida K, Ardianti V (2020) Conservation of xylose fermentability in Phlebia species and direct fermentation of xylan by selected fungi. Appl Biochem Biotechnol 192:895–909. https://doi.org/10.1007/s12010-020-03375-x

    Article  CAS  PubMed  Google Scholar 

  21. Miedl M, Cornfine S, Leiper KA, Shepherd M, Stewart GG (2007) Low-temperature processing of wheat for bioethanol production: part I. Studies on the use of commercial enzymes. J Am Soc Brew Chem 65:183–191. https://doi.org/10.1094/asbcj-2007-0801-01

    Article  CAS  Google Scholar 

  22. Nakashima K, Yamaguchi K, Taniguchi N, Arai S, Yamada R, Katahira S, Ishida N, Takahashi H, Ogino C, Kondo A (2011) Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pre-treatment. Green Chem 13:2948–2953. https://doi.org/10.1039/c1gc15688h

    Article  CAS  Google Scholar 

  23. Rempel A, de Souza SF, Margarites AC, Astolfi AL, Steinmetz RLR, Kunz A, Treichel H, Colla LM (2019) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288:121588. https://doi.org/10.1016/j.biortech.2019.121588

    Article  CAS  PubMed  Google Scholar 

  24. Santosh I, Ashtavinayak P, Amol D, Sanjay P (2017) Enhanced bioethanol production from different sugarcane bagasse cultivars using co-culture of Saccharomyces cerevisiae and Scheffersomyces (Pichia) stipitis. J Environ Chem Eng 5:2861–2868. https://doi.org/10.1016/j.jece.2017.05.045

    Article  CAS  Google Scholar 

  25. Yu M, Li J, Chang S, Zhang L, Mao Y, Cui T, Yan Z, Luo C, Li S (2016) Bioethanol production using the sodium hydroxide pretreated sweet sorghum bagasse without washing. Fuel 175:20–25. https://doi.org/10.1016/j.fuel.2016.02.012

    Article  CAS  Google Scholar 

  26. Sarkar D, Prajapati S, Poddar K, Sarkar A (2019) Production of ethanol by Enterobacter sp. SWET4 during fruit waste biotransformation. Int Biodeterior Biodegradation 104795. https://doi.org/10.1016/j.ibiod.2019.104795

  27. Oran SA, Althaher AR, Al Shhab MA (2022) Chemical composition, in vitro assessment of antioxidant properties and cytotoxicity activity of ethanolic and aqueous extracts of Ajuga orientalis L. (Lamiaceae). J Pharm Pharmacogn Res 10(3):486–95

    Article  CAS  Google Scholar 

  28. Surleva A, Zaharia M, Ion L, Gradinaru RV, Drochioiu G, Mangalagiu I (2013) Ninhydrin-based spectrophotometric assays of trace cyanide. Acta Chimica 21:57–70. https://doi.org/10.2478/achi-2013-0006

    Article  CAS  Google Scholar 

  29. Byanju B, Hojilla-Evangelista MP, Lamsal BP (2021) Fermentation performance and nutritional assessment of physically processed lentil and green pea flour. J Sci Food Agric 101(14):5792–5806. https://doi.org/10.1002/jsfa.11229

    Article  CAS  PubMed  Google Scholar 

  30. Kumari D, Jain Y, Singh R (2021) A study on green pretreatment of rice straw using Petha wastewater and Mausami waste assisted with microwave for production of ethanol and methane. Energy Convers Manag 10:100067. https://doi.org/10.1016/j.ecmx.2020.100067

    Article  CAS  Google Scholar 

  31. Germec M, Gürler HN, Ozcan A, Erkan SB, Karahalil E, Turhan I (2020) Medium optimization and kinetic modeling for the production of Aspergillus niger inulinase. Bioproc Biosyst Eng 43:217–232. https://doi.org/10.1007/s00449-019-02219-1

    Article  CAS  Google Scholar 

  32. Hoehnel A, Bez J, Sahin AW, Coffey A, Arendt EK, Zannini E (2020) Leuconostoc citreum TR116 as a microbial cell factory to functionalise high-protein faba bean ingredients for bakery applications. Foods 9:1706. https://doi.org/10.3390/foods9111706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou QI, Zhao YU, Dang H, Tang Y, Zhang B (2019) Antibacterial effects of phytic acid against foodborne pathogens and investigation of its mode of action. J Food Prot 82:826–833. https://doi.org/10.4315/0362-028X.JFP-18-418

    Article  CAS  PubMed  Google Scholar 

  34. Kumar A, Singh B, Raigond P, Sahu C, Mishra UN, Sharma S, Lal MK (2021) Phytic acid: blessing in disguise, a prime compound required for both plant and human nutrition. Food Res Int 142:110193. https://doi.org/10.1016/j.foodres.2021.110193

    Article  CAS  PubMed  Google Scholar 

  35. Samtiya M, Aluko RE, Dhewa T (2020) Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition 2(1):1–4. https://doi.org/10.1186/s43014-020-0020-5

    Article  Google Scholar 

  36. Pazla R, Yanti G, Jamarun N, Arief A, Elihasridas E, Sucitra LS (2021) Degradation of phytic acid from tithonia (Tithonia diversifolia) leaves using Lactobacillus bulgaricus at different fermentation times. Biodiversitas 22(11)

  37. Nadeem M, Anjum FM, Amir RM, Khan MR, Hussain S, Javed MS (2010) An overview of anti-nutritional factors in cereal grains with special reference to wheat-a review. Pak J Food Sci 20(1–4):54–61

    Google Scholar 

  38. Dos Santos JF, Tintino SR, de Freitas TS, Campina FF, Irwin RDA, Siqueira-Júnior JP, Coutinho HD, Cunha FA (2018) In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis 57:22–28. https://doi.org/10.1016/j.cimid.2018.03.001

    Article  PubMed  Google Scholar 

  39. Farha AK, Yang QQ, Kim G, Li HB, Zhu F, Liu HY, Gan RY, Corke H (2020) Tannins as an alternative to antibiotics. Food Biosci 38:100751. https://doi.org/10.1016/j.fbio.2020.100751

    Article  CAS  Google Scholar 

  40. Júnior VVS, Raposo BL, Lopes AC, Araújo PS, Fontes A, Cabral Filho PE, Maciel MA (2020) Activity of carbonyl cyanide-3-chlorophenylhydrazone on biofilm formation and antimicrobial resistance in Pseudomonas aeruginosa using quantum dots-meropenem conjugates as nanotools. Methods Appl Fluoresc 8:045005

    Article  Google Scholar 

  41. García L, de Lomana A, Vilhjálmsson AI, McGarrity S, Sigurðardóttir R, Anuforo Ó, Viktorsdóttir AR, Kotronoulas A, Bergmann A, Franzson L, Halldórsson H, Henriksen HH (2022) Metabolic response in endothelial cells to catecholamine stimulation associated with increased vascular permeability. Int J Mol Sci 23(6):3162

    Article  Google Scholar 

  42. Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N (2022) Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: a comprehensive review. Molecules 27(5):1484. https://doi.org/10.3390/molecules27051484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A (2021) The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 10(2):188. https://doi.org/10.3390/antiox10020188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong G, Liu H, Yu X, Zhang X, Lu H, Zhou T, Cao J (2018) Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat Prod Res 32:2225–2228. https://doi.org/10.1080/14786419.2017.1366485

    Article  CAS  PubMed  Google Scholar 

  45. Vilhelmova-Ilieva N, Galabov AS, Mileva M (2019) Tannins as antiviral agents. In: Aires A (ed) Tannins-structural properties, biological properties and current knowledge. London, United Kingdom.

  46. Sunarno JN, Prasertsan P, Duangsuwan W, Kongjan P, Cheirsilp B (2020) Mathematical modeling of ethanol production from glycerol by Enterobacter aerogenes concerning the influence of impurities, substrate, and product concentration. Biochem Eng J 155:107471. https://doi.org/10.1016/j.bej.2019.107471

    Article  CAS  Google Scholar 

  47. Zakeri A, Pazouki M, Vossougi M (2018) Development of kinetic model for xanthan production in a laboratory-scale batch fermentor. Iran J Sci Technol Trans A Sci 42:261–266. https://doi.org/10.1007/s40995-017-0343-5

    Article  Google Scholar 

Download references

Acknowledgements

Authors express their heartfelt gratitude to The Science and Engineering Research Board (SERB) for funding the project “EEQ/2020/000626.” The authors are also grateful to The Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, for providing the facilities and infrastructure.

Funding

This study was funded by “The Science and Engineering Research Board (SERB—EEQ/2020/000626).”

Author information

Authors and Affiliations

Authors

Contributions

Debapriya Sarkar: conceptualization, data curation, methodology, investigation. Kasturi Poddar: writing—original draft, writing—review and editing. Sourav Maity: software, visualization. Pritam Bajirao Patil: software, visualization. Angana Sarkar: supervision, project administration.

Corresponding author

Correspondence to Angana Sarkar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, D., Poddar, K., Maity, S. et al. Influence of Antinutrients on Bacterial Growth and Bioethanol Production by Klebsiella sp. SWET4 Through Direct Fermentation of Fruit Wastes: a Novel Perspective for Substrate Selection. Bioenerg. Res. 16, 191–202 (2023). https://doi.org/10.1007/s12155-022-10469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10469-3

Keywords

Navigation