Skip to main content
Log in

Effects of the Light Irradiance on the Growth and Lipid Content of Amphidinium carterae (Dinophyceae) for Biofuel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The irradiance level used in the microalgae cultures can modify the growth and proximate composition; however, this response is specie specific. The dinoflagellate group has the potential to be used as a source of biofuel production. This study evaluated the effect of five irradiance levels (50, 100, 150, 200, and 250 µmol photon m−2 s−1) on the growth rate, proximal composition, pigment content, and photosynthesis of Amphidinium carterae. The highest cell concentration was for the cultures at 150 µmol photon m−2 s−1 (130 × 103 cells mL−1) and the lowest value for 50 µmol photon m−2 s−1 (49 × 103 cells mL−1). The cultures maintained under the lowest irradiance had the highest values of organic dry weight (ODW) and inorganic dry weight (IDW). The protein and carbohydrate content changes significantly concerning the irradiance level, with the higher values (1599.46 pg cell−1 and 557.24 pg cell−1, respectively) at an irradiance of 200 µmol photon m−2 s−1. Lipid content was modified by the effect of irradiance, with the highest values (6920.89 pg cell−1) at the lowest irradiance used. As a general trend, the high irradiances increased the photosynthesis rates. These findings demonstrate that the strain of A. carterae used in this work can grow in high irradiances (100 to 250 µmol photon m−2 s−1) and significantly increase the lipid content at low irradiance used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Venkata-Subhash G, Rajvanshi M, Kumar GRK, Shankar Sagaram U, Prasad V, Govindachary S, Dasgupta S (2022) Challenges in microalgal biofuel production: a perspective on techno economic feasibility under biorefinery stratagem. Bioresour Technol 343:126155. https://doi.org/10.1016/j.biortech.2021.126155

    Article  CAS  PubMed  Google Scholar 

  2. Kowthaman CN, Senthil Kumar P, Mozhi Selvan VA, Ganesh D (2022) A comprehensive insigth from microalgae production process to characterization of biofuel for sustainable energy. Fuel 310:122320. https://doi.org/10.1016/j.fuel.2021.122320

    Article  CAS  Google Scholar 

  3. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–24. https://doi.org/10.1007/s12155-008-9008-8

    Article  Google Scholar 

  4. Novoveská L, Ross ME, Stanley MS, Pradelles R, Wasiolek V, Sassi J-F (2019) Microalgal carotenoids: a review of production, current markets, regulations, and future direction. Mar Drugs 17:640. https://doi.org/10.3390/md17110640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi T-Q, Wang L-R, Zhang Z-X, Sun X-M, Huang H (2020) Stress as first-line tools for enhancing lipid and carotenoid production in microalgae. Front Bioeng Biotechnol 8:610. https://doi.org/10.3389/fbioe.2020.00610

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gallardo-Rodríguez J, Sánchez-Mirón A, García-Camacho F, López-Rosales F, Chisti Y, Molina-Grima E (2012) Bioactives from microalgal dinoflagellates. Biotechnol Adv 30:1673–1684. https://doi.org/10.1016/j.biotechadv.2012.07.005

    Article  CAS  PubMed  Google Scholar 

  7. Assunção J, Guedes CA, Malcata XF (2017) Biotechnological and pharmacological applications of biotoxins and other bioactive molecules from dinoflagellates. Mar Drugs 15:393. https://doi.org/10.3390/md15120393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishikawa C, Jomori T, Tanaka J, Senba M, Mori N (2016) Peridinin, a carotenoid, inhibits proliferation and survival of HTLV-1-infected T-cell lines. Int J Oncol 49:1713–1721. https://doi.org/10.3892/ijo.2016.3648

    Article  CAS  PubMed  Google Scholar 

  9. Simionato D, Basso S, Giacometti GM, Morosinotto T (2013) Optimization of light use efficiency for biofuel production in algae. Biophys Chem 182:71–78. https://doi.org/10.1016/j.bpc.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  10. Adarme-Vega TJ, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18. https://doi.org/10.1016/j.copbio.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  11. Jørgensen MF, Murray S, Daugbjerg N (2004) Amphidinium revisited. I. Redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analyses. J Phycol 40:351–365. https://doi.org/10.1111/j.1529-8817.2004.03131.x

    Article  Google Scholar 

  12. Morsy N, Houdai T, Matsuoka S, Matsumori N, Adachi S, Oishi T, Murata M, Iwashita T, Fujita T (2006) Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities. Bioorganic Med Chem 14:6548–6554. https://doi.org/10.1016/j.bmc.2006.06.012

    Article  CAS  Google Scholar 

  13. Wakamiya Y, Ebine M, Matsumori N, Oishi T (2020) Total synthesis of amphidinol 3: a general strategy for synthesizing amphidinol snalogues and structure-activity relationship study. J Am Chem Soc 142:3472–3478. https://doi.org/10.1021/jacs.9b11789

    Article  CAS  PubMed  Google Scholar 

  14. Wellkamp M, García-Camacho F, Durán-Riveroll LM, Tebben J, Tillmann U, Krock B (2020) LC-MS/MS method development for the discovery and identification of amphidinols produced by Amphidinium. Mar Drugs 18:497. https://doi.org/10.3390/md18100497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molina-Miras A, López-Rosales L, Sánchez-Mirón A, Cerón-García MC, Seoane-Parra S, García-Camacho F, Molina-Grima E (2018) Long-term culture of the marine dinoflagellate microalga Amphidinium carterae in an indoor LED-lighted raceway photobioreactor: production of carotenoids and fatty acids. Bioresour Technol 265:257–267. https://doi.org/10.1016/j.biortech.2018.05.104

    Article  CAS  PubMed  Google Scholar 

  16. Molina-Miras A, Morales-Amador A, de Vera CR, López-Rosales L, Sánchez-Mirón A, Souto ML, Fernández JJ, Norte M, García-Camacho F, Molina-Grima E (2018) A pilot-scale bioprocess to produce amphidinols from the marine microalga Amphidinium carterae: isolation of a novel analogue. Algal Res 31:87–98. https://doi.org/10.1016/j.algal.2018.01.010

    Article  Google Scholar 

  17. López-Rodríguez M, Cerón-García MC, López-Rosales L, González-López CV, Molina-Miras A, Ramírez-González A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2019) Assessment of multi-step processes for an integral use of the biomass of the marine microalga Amphidinium carterae. Bioresour Technol 282:370–377. https://doi.org/10.1016/j.biortech.2019.03.041

    Article  CAS  PubMed  Google Scholar 

  18. Maltsev Y, Maltseva K, Kulikovskiy M, Maltseva S (2021) Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology 10:1060. https://doi.org/10.3390/biology10101060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gris B, Morosinotto T, Giacometti GM, Bertucco A, Sforza E (2014) Cultivation of Scenedesmus obliquus in photobioreactors: effects of light intensities and light-dark cycles on growth, productivity, and biochemical composition. Appl Biochem Biotechnol 172:2377–2389. https://doi.org/10.1007/s12010-013-0679-z

    Article  CAS  PubMed  Google Scholar 

  20. Guillard RRL, Ryther JH (1962) Studies om marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Gran Can J Microbiol 8:229–239. https://doi.org/10.1139/m62-029

    Article  CAS  PubMed  Google Scholar 

  21. Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods. Cambridge University Press, Crambridge, Culture methods and growth measurements, pp 96–97

    Google Scholar 

  22. Sánchez-Saavedra MP, Castro-Ochoa FY, Nava-Ruiz VM, Ruiz-Güereca DA, Villagómez-Aranda AL, Siqueiros-Vargas F, Molina-Cárdenas CA (2018) Effects of nitrogen source and irradiance on Porphyridium cruentum. J Appl Phycol 30:783–792. https://doi.org/10.1007/s10811-017-1284-2

    Article  CAS  Google Scholar 

  23. Eilers PHC, Peeters JCH (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol Model 42:199–215. https://doi.org/10.1016/0304-3800(88)90057-9

    Article  Google Scholar 

  24. Thomas PH, Carr NG (1985) The invariance of macromolecular composition with altered light limited growth rate of Amphidinium carteri (dinophyceae). Arch Microbiol 142:81–86

    Article  CAS  Google Scholar 

  25. Aquino-Cruz A, Okolodkov YB (2016) Impact of increasing water temperature on growth, photosynthetic efficiency, nutrient consumption, and potential toxicity of Amphidinium cf. carterae and Coolia monotis (Dinoflagellata). Rev Biol Mar Oceanogr 51:565–580. https://doi.org/10.4067/S0718-19572016000300008

    Article  Google Scholar 

  26. Li M, Shi X, Guo C, Lin S (2016) Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae. Front Microbiol 7:1–11. https://doi.org/10.3389/fmicb.2016.00826

    Article  Google Scholar 

  27. Valenzuela-Espinoza E, Millán-Núñez R, Santamaría-del Ángel E, Trees CC (2011) Macronutrient uptake and carotenoid/chlorophyll a ratio in the dinoflagellate Amphidinium carteri Hulburt, cultured under different nutrient and light conditions. Hidrobiológica 21:34–48

    Google Scholar 

  28. Leynse AK, Parsons ML, Thomas SE (2017) Differences in the photoacclimation and photoprotection exhibited by two species of the ciguatera causing dinoflagellate genus, Gambierdiscus. Harmful Algae 70:90–97. https://doi.org/10.1016/j.hal.2017.10.008

    Article  PubMed  Google Scholar 

  29. Wahidin S, Idris A, Shaleh SRM (2013) The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour Technol 129:7–11. https://doi.org/10.1016/j.biortech.2012.11.032

    Article  CAS  PubMed  Google Scholar 

  30. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzond A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  31. Fuentes-Grünewald C, Bayliss C, Fonlut F, Chapuli E (2016) Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour Technol 218:533–540. https://doi.org/10.1016/j.biortech.2016.06.128

    Article  CAS  PubMed  Google Scholar 

  32. Makri A, Bellou S, Birkou M, Papatrehas K, Dolapsakis NP, Bokas D, Papanikolaou S, Aggelis G (2011) Lipid synthesized by micro-algae grown in laboratory- and industrial-scale bioreactors. Eng Life Sci 11:52–58. https://doi.org/10.1002/elsc.201000086

    Article  CAS  Google Scholar 

  33. Weldy C, Huesemann M (2007) Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. J Undergrad Res 115–122.

  34. MacDougall KM, McNochol J, McGinn PJ, O’Leary SJB, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 401:2609–2616. https://doi.org/10.1007/s00216-011-5376-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Williams PJB, Laurens LML (2010) Microalgae as biodiesel and biomass feedstock: review and analysis of the biochemistry, energetics and aconomics. Energy Environ Sci 3:554–590. https://doi.org/10.1039/b924978h

    Article  CAS  Google Scholar 

  36. Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553. https://doi.org/10.3390/en5051532

    Article  CAS  Google Scholar 

  37. Nogueira DPK, Silva AF, Araújo OFQ, Chaloub RM (2015) Impact of temperature and light intensity on triacylglycerol accumulation in marine microalgae. Biomass Bioenergy 72:280–287. https://doi.org/10.1016/j.biombioe.2014.10.017

    Article  CAS  Google Scholar 

  38. Remmers IM, Martens DE, Wijffels RH, Lamers PP (2017) Dynamics of tryacylglycerol and EPA production in Phaedactylum tricornutum under nitrogen starvation at different light intensities. PLoS ONE 12:e0175630. https://doi.org/10.1371/journal.pone.0175630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N (2019) Comparison of growth rate and nutrient content of five microalgae species cultivated in greenhouses. Plants 8:1–13. https://doi.org/10.3390/plants8080279

    Article  CAS  Google Scholar 

  40. Richardson K, Beardall J, Raven JA (1983) Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol 93:157–191. https://doi.org/10.1111/j.1469-8137.1983.tb03422.x

    Article  Google Scholar 

  41. Ruivo M, Amorim A, Cartaxana P (2011) Effects of growth phase and irradiance on phytoplankton pigment ratios: implications for chemotaxonomy in coastal waters. J Plankton Res 33:1012–1022. https://doi.org/10.1093/plankt/fbr019

    Article  CAS  Google Scholar 

  42. Xiao FG, Shen L, Ji HF (2011) On photoprotective mechanisms of carotenoids in light harvesting complex. Biochem Biophys Res Commun 414:1–4. https://doi.org/10.1016/j.bbrc.2011.09.049

    Article  CAS  PubMed  Google Scholar 

  43. Tan L, Xu W, He X, Wang J (2019) The feasibility of Fv/Fm on judging nutrient limitation of marine algae through indoor simulation and in situ experiment. Estuar Coast Shelf Sci 229:106411. https://doi.org/10.1016/j.ecss.2019.106411

    Article  CAS  Google Scholar 

  44. Meng R, Zhou C, Zhu X, Huang H, Xu J, Luo Q, Yan X (2019) Critical light-related gene expression varies in two different strains of the dinoflagellate Karlodinium veneficum in response to the light spectrum and light intensity. J Photochem Photobiol B: Biol 194:76–83. https://doi.org/10.1016/j.jphotobiol.2019.03.009

    Article  CAS  Google Scholar 

  45. Masojıdek J, Koblızek M, Torzillo G (2004) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, London, p 35

    Google Scholar 

  46. García-Camacho F, Gallardo-Rodriguez JJ, Sánchez-Mirón A, Belarbi EH, Chisti Y, Molina-Grima E (2011) Photobioreactor scale-up for a shear-sensitive dinoflagellate microalga. Process Biochem 46: 936–944. https://doi.org/10.1016/j.procbio.2011.01.005

Download references

Acknowledgements

We thank Fátima Y. Castro Ochoa and Ceres A. Molina Cárdenas for figure edition. To the postdoctoral scholarship obtained from the Oceanography Division of CICESE.

Funding

This work has been founded by Consejo Nacional de Ciencia y Tecnología (CONACyT) (grant project: SEP – CONACyT 130074) and CICESE (grant project: 623108).

Author information

Authors and Affiliations

Authors

Contributions

A. Mendoza-Flores: design and implementation of the experiments and manuscript preparation. M.P. Sánchez-Saavedra: design and supervision of experiments, data processing, contribution to manuscript preparation, and financial support. C.E. Galindo-Sánchez: contribution to manuscript preparation and financial support.

Corresponding author

Correspondence to M. del Pilar Sánchez-Saavedra.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Flores, A., Galindo-Sánchez, C.E. & Sánchez-Saavedra, M.d.P. Effects of the Light Irradiance on the Growth and Lipid Content of Amphidinium carterae (Dinophyceae) for Biofuel Production. Bioenerg. Res. 16, 348–356 (2023). https://doi.org/10.1007/s12155-022-10455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10455-9

Keywords

Navigation