Skip to main content

Advertisement

Log in

Pyrolysis and Gasification Characteristics of Galdieria sulphuraria Microalgae

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Low-lipid microalgae such as Galdieria sulphuraria can survive extreme conditions suggesting low cultivation costs and potential industrial uses. However, so far, its energy potential for syngas and bio-oil production by pyrolysis and gasification is not fully explored. Herein, pyrolysis/gasification of Galdieria sulphuraria was studied by thermogravimetry and fixed bed reactor in a nitrogen atmosphere with/without downstream Co-Mo-based sour shift catalyst. The yield and higher heating value (HHV) of the product for each experimental run are determined and evaluated in terms of bio-char and bio-oil elemental analysis and syngas composition. Temperature greatly affects the product yield, conversion rate, and gas composition for pyrolysis experiments. However, even at high temperatures, the hydrogen content of the produced syngas is low. Low-temperature catalytic gasification experiments of Galdieria sulphuraria (500 °C) lead to the production of hydrogen-enriched syngas (41.7 vol% H2) and high HHV (~ 30 MJ/kg) bio-oil with lower oxygen and nitrogen content. The results found in this work show the potential of Galdieria sulphuraria as a renewable energy resource for high-quality oil and syngas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Florides GA, Christodoulides P (2009) Global warming and carbon dioxide through sciences. Environ Int 35(2):390–401. https://doi.org/10.1016/j.envint.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  2. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009

    Article  CAS  Google Scholar 

  3. Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380. https://doi.org/10.1016/j.tibtech.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  4. Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber AP (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137(2):460–474. https://doi.org/10.1104/pp.104.051169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Castenholz RW, McDermott TR (2010) The Cyanidiales: ecology, biodiversity, and biogeography. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer Netherlands, Dordrecht, pp 357–371. https://doi.org/10.1007/978-90-481-3795-4_19

  6. Weber A, Oesterhelt C, Gross W, Bräutigam A, Imboden L, Krassovskaya I, Linka N, Truchina J, Schneidereit J, Voll H, Voll L, Zimmermann M, Jamai A, Riekhof W, Yu B, Garavito R, Benning C (2004) EST-analysis of the thermo-acidophilic red microalga Galdieriasulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55(1):17–32. https://doi.org/10.1007/s11103-004-0376-y

    Article  CAS  PubMed  Google Scholar 

  7. Hirooka S, Miyagishima S-y (2016) Cultivation of acidophilic algae Galdieria sulphuraria and Pseudochlorella sp. YKT1 in media derived from acidic hot springs. Front microbiol 7 (2022). https://doi.org/10.3389/fmicb.2016.02022

  8. Čížková M, Vítová M, Zachleder V (2019) The red microalga Galdieria as a promising organism for applications in biotechnology. In: Vítová M (ed) Microalgae - from physiology to application. IntechOpen. https://doi.org/10.5772/intechopen.89810

  9. Selvaratnam T, Pegallapati AK, Montelya F, Rodriguez G, Nirmalakhandan N, Van Voorhies W, Lammers PJ (2014) Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Bioresour Technol 156:395–399. https://doi.org/10.1016/j.biortech.2014.01.075

    Article  CAS  PubMed  Google Scholar 

  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  11. Toor SS, Reddy H, Deng S, Hoffmann J, Spangsmark D, Madsen LB, Holm-Nielsen JB, Rosendahl LA (2013) Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresour Technol 131:413–419. https://doi.org/10.1016/j.biortech.2012.12.144

    Article  CAS  PubMed  Google Scholar 

  12. Cheng F, Cui Z, Mallick K, Nirmalakhandan N, Brewer CE (2018) Hydrothermal liquefaction of high- and low-lipid algae: mass and energy balances. Bioresour Technol 258:158–167. https://doi.org/10.1016/j.biortech.2018.02.100

    Article  CAS  PubMed  Google Scholar 

  13. Ibrahim AFM, Dandamudi KPR, Deng S, Lin JYS (2020) Pyrolysis of hydrothermal liquefaction algal biochar for hydrogen production in a membrane reactor. Fuel 265:116935. https://doi.org/10.1016/j.fuel.2019.116935

    Article  CAS  Google Scholar 

  14. Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101 (12):4593–4599. https://doi.org/10.1016/j.biortech.2010.01.070

  15. Gong X, Zhang B, Zhang Y, Huang Y, Xu M (2014) Investigation on pyrolysis of low lipid microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuels 28(1):95–103. https://doi.org/10.1021/ef401500z

    Article  CAS  Google Scholar 

  16. Peng W, Wu Q, Tu P (2000) Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12(2):147–152. https://doi.org/10.1023/A:1008115025002

    Article  CAS  Google Scholar 

  17. Aysu T, Sanna A (2015) Nannochloropsis algae pyrolysis with ceria-based catalysts for production of high-quality bio-oils. Bioresour Technol 194:108–116. https://doi.org/10.1016/j.biortech.2015.07.027

    Article  CAS  PubMed  Google Scholar 

  18. Thangalazhy-Gopakumar S, Adhikari S, Chattanathan SA, Gupta RB (2012) Catalytic pyrolysis of green algae for hydrocarbon production using H+ZSM-5 catalyst. Bioresour Technol 118:150–157. https://doi.org/10.1016/j.biortech.2012.05.080

    Article  CAS  PubMed  Google Scholar 

  19. Raheem A, Dupont V, Channa AQ, Zhao X, Vuppaladadiyam AK, Taufiq-Yap Y-H, Zhao M, Harun R (2017) Parametric characterization of air gasification of Chlorella vulgaris biomass. Energy Fuels 31(3):2959–2969. https://doi.org/10.1021/acs.energyfuels.6b03468

    Article  CAS  Google Scholar 

  20. Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1):399–404. https://doi.org/10.1016/S0920-5861(98)00275-2

    Article  CAS  Google Scholar 

  21. A Raheem W. A. K. G WA, Taufiq Yap YH, Danquah MK, Harun R, 2015 Optimization of the microalgae Chlorella vulgaris for syngas production using central composite design RSC Adv 5 88 71805 71815. https://doi.org/10.1039/C5RA10503J

  22. Díaz-Rey MR, Cortés-Reyes M, Herrera C, Larrubia MA, Amadeo N, Laborde M, Alemany LJ (2015) Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catal Today 257:177–184. https://doi.org/10.1016/j.cattod.2014.04.035

    Article  CAS  Google Scholar 

  23. Duman G, Uddin MA, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30. https://doi.org/10.1016/j.biortech.2014.04.096

    Article  CAS  PubMed  Google Scholar 

  24. Raheem A, Liu H, Ji G, Zhao M (2019) Gasification of lipid-extracted microalgae biomass promoted by waste eggshell as CaO catalyst. Algal Res 42:101601. https://doi.org/10.1016/j.algal.2019.101601

    Article  Google Scholar 

  25. Arnold RA, Hill JM (2019) Catalysts for gasification: a review. Sustain Energy Fuels 3(3):656–672. https://doi.org/10.1039/C8SE00614H

    Article  CAS  Google Scholar 

  26. Ren J, Cao J-P, Zhao X-Y, Yang F-L, Wei X-Y (2019) Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 116:109426. https://doi.org/10.1016/j.rser.2019.109426

    Article  CAS  Google Scholar 

  27. Tang Z, Chen W, Chen Y, Hu J, Yang H, Chen H (2021) Preparation of low-nitrogen and high-quality bio-oil from microalgae catalytic pyrolysis with zeolites and activated carbon. J Anal Appl Pyrolysis:105182. https://doi.org/10.1016/j.jaap.2021.105182

  28. Gong Z, Fang P, Wang Z, Li Q, Li X, Meng F, Zhang H, Liu L (2020) Catalytic pyrolysis of chemical extraction residue from microalgae biomass. Renew Energy 148:712–719. https://doi.org/10.1016/j.renene.2019.10.158

    Article  CAS  Google Scholar 

  29. Watanabe H, Li D, Nakagawa Y, Tomishige K, Watanabe MM (2015) Catalytic gasification of oil-extracted residue biomass of Botryococcus braunii. Bioresour Technol 191:452–459. https://doi.org/10.1016/j.biortech.2015.03.034

    Article  CAS  PubMed  Google Scholar 

  30. Mo L, Dai H, Feng L, Liu B, Li X, Chen Y, Khan S (2020) In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: effects of nitrogen and carbon dioxide environment. Bioresour Technol 314:123758. https://doi.org/10.1016/j.biortech.2020.123758

    Article  CAS  PubMed  Google Scholar 

  31. Liu B, Zhao L, Wu Z, Zhang J, Zong Q, Almegren H, Wei F, Zhang X, Zhao Z, Gao J, Xiao T (2019) Recent advances in industrial sulfur tolerant water gas shift catalysts for syngas hydrogen enrichment: application of lean (low) steam/gas ratio. Catalysts 9(9):772. https://doi.org/10.3390/catal9090772

    Article  CAS  Google Scholar 

  32. Chianese S, Fail S, Binder M, Rauch R, Hofbauer H, Molino A, Blasi A, Musmarra D (2016) Experimental investigations of hydrogen production from CO catalytic conversion of tar rich syngas by biomass gasification. Catal Today 277:182–191. https://doi.org/10.1016/j.cattod.2016.04.005

    Article  CAS  Google Scholar 

  33. de la Osa AR, De Lucas A, Valverde JL, Romero A, Monteagudo I, Sánchez P (2011) Performance of a sulfur-resistant commercial WGS catalyst employing industrial coal-derived syngas feed. Int J Hydrog Energy 36(1):44–51. https://doi.org/10.1016/j.ijhydene.2010.08.127

    Article  CAS  Google Scholar 

  34. Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51(3):325–440. https://doi.org/10.1080/01614940903048661

    Article  CAS  Google Scholar 

  35. Dandamudi KPR, Muppaneni T, Sudasinghe N, Schaub T, Holguin FO, Lammers PJ, Deng S (2017) Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Bioresour Technol 236:129–137. https://doi.org/10.1016/j.biortech.2017.03.165

    Article  CAS  PubMed  Google Scholar 

  36. Wang J, Krishna R, Yang J, Dandamudi KPR, Deng S (2015) Nitrogen-doped porous carbons for highly selective CO2 capture from flue gases and natural gas upgrading. Mater Today Commun 4:156–165. https://doi.org/10.1016/j.mtcomm.2015.06.009

    Article  CAS  Google Scholar 

  37. Dandamudi KPR, Muppaneni T, Markovski JS, Lammers P, Deng S (2019) Hydrothermal liquefaction of green microalga Kirchneriella sp. under sub- and super-critical water conditions. Biomass Bioenergy 120:224–228. https://doi.org/10.1016/j.biombioe.2018.11.021

    Article  CAS  Google Scholar 

  38. Waldheim L, Nilsson T (2001) Heating value of gases from biomass gasification. Report Number: TPS-01/16 S. TPS Termiska Processer AB, 611 82 Nyköping. From http://gasificationofbiomass.org/app/webroot/files/file/publications/HeatingValue.pdf

  39. Wang J, Xiao B, Liu S, Hu Z, He P, Guo D, Hu M, Qi F, Luo S (2013) Catalytic steam gasification of pig compost for hydrogen-rich gas production in a fixed bed reactor. Bioresour Technol 133:127–133. https://doi.org/10.1016/j.biortech.2013.01.092

    Article  CAS  PubMed  Google Scholar 

  40. Vasudevan PT, Briggs M (2008) Biodiesel production–current state of the art and challenges. J Ind Microbiol Biotechnol 35(5):421. https://doi.org/10.1007/s10295-008-0312-2

    Article  CAS  PubMed  Google Scholar 

  41. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46. https://doi.org/10.1016/S0960-8524(01)00118-3

    Article  CAS  PubMed  Google Scholar 

  42. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  43. Pinto F, Franco C, André RN, Tavares C, Dias M, Gulyurtlu I, Cabrita I (2003) Effect of experimental conditions on co-gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system. Fuel 82(15):1967–1976. https://doi.org/10.1016/S0016-2361(03)00160-1

    Article  CAS  Google Scholar 

  44. Florin NH, Harris AT (2008) Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents. Chem Eng Sci 63(2):287–316. https://doi.org/10.1016/j.ces.2007.09.011

    Article  CAS  Google Scholar 

  45. De la Osa AR, De Lucas A, Romero A, Valverde JL, Sánchez P (2011) Kinetic models discrimination for the high pressure WGS reaction over a commercial CoMo catalyst. Int J Hydrogen Energy 36(16):9673–9684. https://doi.org/10.1016/j.ijhydene.2011.05.043

    Article  CAS  Google Scholar 

  46. Bae YJ, Ryu C, Jeon J-K, Park J, Suh DJ, Suh Y-W, Chang D, Park Y-K (2011) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour Technol 102(3):3512–3520. https://doi.org/10.1016/j.biortech.2010.11.023

    Article  CAS  PubMed  Google Scholar 

  47. Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol 101(21):8389–8395. https://doi.org/10.1016/j.biortech.2010.05.040

    Article  CAS  PubMed  Google Scholar 

  48. Li F, Srivatsa SC, Batchelor W, Bhattacharya S (2017) A study on growth and pyrolysis characteristics of microalgae using thermogravimetric analysis-infrared spectroscopy and synchrotron Fourier transform infrared spectroscopy. Bioresour Technol 229:1–10. https://doi.org/10.1016/j.biortech.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  49. Li F, Srivatsa SC, Bhattacharya S (2019) A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew Sustain Energy Rev 108:481–497. https://doi.org/10.1016/j.rser.2019.03.026

    Article  CAS  Google Scholar 

  50. Nolte MW, Saraeian A, Shanks BH (2017) Hydrodeoxygenation of cellulose pyrolysis model compounds using molybdenum oxide and low pressure hydrogen. Green Chem 19(15):3654–3664. https://doi.org/10.1039/C7GC01477E

    Article  CAS  Google Scholar 

  51. Xu L, Keogh RA, Huang C-S, Spicer RL, Sparks DE, Lambert S, Thomas GA, Davis BH (1994) Catalytic hydrotreatment of coal-derived naphtha. Fuel Sci Technol Int 12(10):1355–1376. https://doi.org/10.1080/08843759408916239

    Article  CAS  Google Scholar 

  52. Ruddy DA, Schaidle JA, Ferrell Iii JR, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16(2):454–490. https://doi.org/10.1039/C3GC41354C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. K.P.R. Dandamudi and Prof. Peter Lammers for providing algae samples in this study.

Author information

Authors and Affiliations

Authors

Contributions

Fateme Banihashemi: conceptualization, performing experiments, and characterization work. Amr F. M. Ibrahim: conceptualization, experiment design, formal analysis, data curation, writing — original draft. Shuguang Deng: supervision, project administration, writing — review and editing. Y.S. Lin: supervision, project administration, writing — review and editing.

Corresponding authors

Correspondence to Amr F. M. Ibrahim or Jerry Y. S. Lin.

Ethics declarations

Ethics Approval and Consent to Participate

There are no ethical issues associated with this manuscript and all the author consent to participate.

Consent for Publication

All authors consent the research article for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 737 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banihashemi, F., Ibrahim, A.F.M., Deng, S. et al. Pyrolysis and Gasification Characteristics of Galdieria sulphuraria Microalgae. Bioenerg. Res. 16, 611–621 (2023). https://doi.org/10.1007/s12155-022-10449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10449-7

Keywords

Navigation