Skip to main content
Log in

Increase in Methane Production Through the Application of Combined Pretreatments on Water Hyacinth Waste

  • Published:
BioEnergy Research Aims and scope Submit manuscript
  • 1 Altmetric

Abstract

Water hyacinth (WH) is an invasive plant that generates adverse effects in water bodies, which, when removed, becomes a lignocellulosic residue that would use for methane production. The present investigation aimed to assess the increase in methane production when are applied and combined the pretreatments: grinding, chemical (pH adjust), thermal (temperature control), and concentration control, in anaerobic digestion (AD) through the biochemical methane potential (BMP) test, developed and based on a Taguchi L8 orthogonal arrangement. The results obtained from this study revealed that combined pretreatment has a positive effect on increasing methane production, concerning test control of WH chopped unpretreated, and achieving an increase of 260% to the better conditions (concentration of 30 g CODL−1, pH of 8.5, grinding with a disc mill, and a temperature of 40 °C, for 30 min). The degradation kinetic constant for the best combination of pretreatments as a function of volatile solids (VS) consumption and time was 0.0032 day−1, and the methane production kinetic constant was 0.17 day−1, with a yield of 111 NmL CH4 g VS−1 (equivalent to 0.02856 kg CH4 kg WH−1), and generation potential of 5712 kg of CH4 ha−1 year−1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138. https://doi.org/10.1016/j.envint.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  2. Tabatabaei M, Aghbashlo M et al (2020) A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies. Renew Energy 146:1204–1220. https://doi.org/10.1016/j.renene.2019.07.037

    Article  CAS  Google Scholar 

  3. Villamagna AM, Murphy BR (2010) Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshw Biol 55:282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x

    Article  Google Scholar 

  4. Sarto S, Hildayati R, Syaichurrozi I (2019) Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics. Renew Energy 132:335–350. https://doi.org/10.1016/j.renene.2018.07.121

    Article  CAS  Google Scholar 

  5. Ali SS, Sun J (2019) Effective thermal pretreatment of water hyacinth (Eichhornia crassipes) for the enhancement of biomethanation: VIT ® gene probe technology for microbial community analysis with special reference to methanogenic Archaea. J Environ Chem Eng 7:102853. https://doi.org/10.1016/j.jece.2018.102853

    Article  CAS  Google Scholar 

  6. Tasnim F, Iqbal SA, Chowdhury AR (2017) Biogas production from anaerobic co-digestion of cow manure with kitchen waste and water hyacinth. Renew Energy 109:434–439. https://doi.org/10.1016/j.renene.2017.03.044

    Article  CAS  Google Scholar 

  7. Yao Z, Ma X, Xiao Z (2020) The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth. Renew Energy 151:514–527. https://doi.org/10.1016/j.renene.2019.11.046

    Article  CAS  Google Scholar 

  8. Liu X et al (2021) Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. Water Res 189:116645. https://doi.org/10.1016/j.watres.2020.116645

    Article  CAS  PubMed  Google Scholar 

  9. Zheng Y et al (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53. https://doi.org/10.1016/j.pecs.2014.01.001

    Article  Google Scholar 

  10. Civelek Y et al (2018) The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins. J Mater Cycles Waste Manag 20:800–809. https://doi.org/10.1007/s10163-017-0641-1

    Article  CAS  Google Scholar 

  11. Liu X et al (2019) Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Water Res 155:142–151. https://doi.org/10.1016/j.watres.2019.02.036

    Article  CAS  PubMed  Google Scholar 

  12. O’Sullivan C et al (2010) Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba caroliniana), and salvinia (Salvinia molesta). Ecol Eng 36:1459–1468. https://doi.org/10.1016/j.ecoleng.2010.06.027

    Article  Google Scholar 

  13. Wang D et al (2018) Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Res 130:281–290. https://doi.org/10.1016/j.watres.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  14. Liu J et al (2021) A novel technique for sustainable utilization of water hyacinth using EGSB and MCSTR: control overgrowth, energy recovery, and microbial metabolic mechanism. Renew Energy 163:1701–1710. https://doi.org/10.1016/j.renene.2020.10.093

    Article  CAS  Google Scholar 

  15. Paz FR et al (2021) Evaluation of the effects of different chemical pretreatments in sugarcane bagasse on the response of enzymatic hydrolysis in batch systems subject to high mass loads. Renew Energy 165:1–13. https://doi.org/10.1016/j.renene.2020.10.092

    Article  CAS  Google Scholar 

  16. Bolado S et al (2016) Effect of thermal, acid, alkaline, and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour Technol 201:182–190. https://doi.org/10.1016/j.biortech.2015.11.047

    Article  CAS  Google Scholar 

  17. Wang D et al (2019) The underlying mechanism of calcium peroxide pretreatment enhancing methane production from anaerobic digestion of waste activated sludge. Water Res 164:114934. https://doi.org/10.1016/j.watres.2019.114934

    Article  CAS  PubMed  Google Scholar 

  18. Hassan SS, Williams GA, Jaiswal AK (2018) Emerging technologies for the pretreatment of lignocellulosic biomass. Bioresour Technol 262:310–318. https://doi.org/10.1016/j.biortech.2018.04.099

    Article  CAS  PubMed  Google Scholar 

  19. Rabemanolontsoa H, Saka S (2016) Various pretreatments of lignocellulosics. Bioresour Technol 199:83–91. https://doi.org/10.1016/j.biortech.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  20. Barua VB, Kalamdhad AS (2018) Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimize the ideal F/M ratio. Fuel 217:91–97. https://doi.org/10.1016/j.fuel.2017.12.074

    Article  CAS  Google Scholar 

  21. Sukasem N, Khanthi K, Prayoonkham S (2017) Biomethane recovery from fresh and dry water hyacinth anaerobic co-digestion with pig dung, elephant dung, and bat dung with different alkali pretreatments. Energy Procedia 138:294–300. https://doi.org/10.1016/j.egypro.2017.10.094

    Article  CAS  Google Scholar 

  22. Barua VB, Kalamdhad AS (2017) Biochemical methane potential test of untreated and hot air oven pretreated water hyacinth: a comparative study. J Clean Prod 166:273–284. https://doi.org/10.1016/j.jclepro.2017.07.231

    Article  CAS  Google Scholar 

  23. Rajput AA, Zeshan HM (2020) Enhancing biogas production through co-digestion and thermal pretreatment of wheat straw and sunflower meal. Renew Energy 168:1–10. https://doi.org/10.1016/j.renene.2020.11.149

    Article  CAS  Google Scholar 

  24. Chen H et al (2020) Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and enhancement mechanism. Renew Energy 147:2409–2416. https://doi.org/10.1016/j.renene.2019.10.051

    Article  CAS  Google Scholar 

  25. Das SP et al (2016) Enhanced bioethanol production from water hyacinth (Eichhornia crassipes) by statistical optimization of fermentation process parameters using Taguchi orthogonal array design. Int Biodeterior Biodegrad 109:174–184. https://doi.org/10.1016/j.ibiod.2016.01.008

    Article  CAS  Google Scholar 

  26. Holliger C et al (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522. https://doi.org/10.2166/wst.2016.336

    Article  CAS  PubMed  Google Scholar 

  27. Mlaik N et al (2018) Improvement of anaerobic biodegradability of organic fraction of municipal solid waste by mechanical and thermochemical pretreatments. Int J Environ Sci Technol 15:1913–1920. https://doi.org/10.1007/s13762-017-1563-0

    Article  CAS  Google Scholar 

  28. Lin Q et al (2016) Temperature regulates methane production through the function centralization of the microbial community in anaerobic digestion. Bioresour Technol 216:150–158. https://doi.org/10.1016/j.biortech.2016.05.046

    Article  CAS  PubMed  Google Scholar 

  29. Carter MR, Gregorich EG (2006) Soil sampling and methods of analysis. Can Soc Soil Sci.

  30. Reyes MD (2009) Tratamiento de aguas residuales provenientes de rastro mediante un sistema de biodegradación anaerobia-aerobia (Tesis de Maestría). Univ Auton Mex. https://repositorio.unam.mx/contenidos/78438

  31. Baird RB, Eaton AD, Rice EW (2017) Standard methods for the examination of water and wastewater. Am Public Health Assoc. https://www.standardmethods.org/

  32. HACH C (2000) Water analysis manual. 970: 1997–2000. https://www.hach.com/asset-get.download.jsa?id=7639984469

  33. Lee S, Lee DK (2018) Multiple comparison test and its imitations what is the proper way to apply the multiple comparison test? Korean J Anesthesiol 5:353–360. https://doi.org/10.4097/kja.d.18.00242

    Article  Google Scholar 

  34. Chen YR, Hashimoto AG (1980) Substrate utilization kinetic model for biological treatment process. Biotechnol Bioeng 22:2081–2095. https://doi.org/10.1002/bit.260221008

    Article  CAS  PubMed  Google Scholar 

  35. Angelidaki I et al (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. https://doi.org/10.2166/wst.2009.040

    Article  CAS  PubMed  Google Scholar 

  36. Li J, Zicari SM, Cui Z, Zhang R (2014) Processing anaerobic sludge for extended storage as anaerobic digester inoculum. Bioresour Technol 166:201–210. https://doi.org/10.1016/j.biortech.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  37. Ogunwande GA et al (2018) Comparative evaluation and kinetics of biogas yield from duckweed (Lemna minor) co-digested with water hyacinth (Eichhornia crassipes). Ife J Sci 20:649–661. https://doi.org/10.4314/ijs.v20i3.18

    Article  Google Scholar 

  38. Castro YA, Foster AA (2020) Biomethanation of invasive water hyacinth from eutrophic waters as a post weed management practice in the Dominican Republic: a developing country. Environ Sci Pollut Res 27:14138–14149. https://doi.org/10.1007/s11356-020-07927-w

    Article  CAS  Google Scholar 

  39. Sinbuathong N et al (2019) Biogas production in semi-continuous-flow reactors using freshwater hyacinth from the Chao Phraya River. Int J Glob Warm 17:252–265. https://doi.org/10.1504/IJGW.2019.098497

    Article  Google Scholar 

  40. Barua VB, Kalamdhad AS (2019) Biogas production from water hyacinth in a novel anaerobic digester: a continuous study. Process Saf Environ Prot 127:82–89. https://doi.org/10.1016/j.psep.2019.05.007

    Article  CAS  Google Scholar 

  41. Wang G et al (2018) Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: performance and associated mechanisms. Bioresour Technol 250:812–820. https://doi.org/10.1016/j.biortech.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  42. Tian SQ, Zhao RY, Chen ZC (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energy Rev 91:483–489. https://doi.org/10.1016/j.rser.2018.03.113

    Article  CAS  Google Scholar 

  43. Qiao W et al (2011) Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew Energy 36:3313–3318. https://doi.org/10.1016/j.renene.2011.05.002

    Article  CAS  Google Scholar 

  44. Yuan H et al (2019) Enhancing methane production of excess sludge and dewatered sludge with combined low frequency CaO-ultrasonic pretreatment. Bioresour Technol 273:425–430. https://doi.org/10.1016/j.biortech.2018.10.040

    Article  CAS  PubMed  Google Scholar 

  45. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  46. Sambusiti C et al (2013) Effect of particle size on methane production of raw and alkaline pre-treated ensiled sorghum forage. Waste Biomass Valor 4:549–556. https://doi.org/10.1007/s12649-013-9199-x

    Article  CAS  Google Scholar 

  47. Mirmohamadsadeghi S et al (2019) Biogas production from food wastes: a review on recent developments and future perspectives. Bioresour Technol Rep 7:100202. https://doi.org/10.1016/j.biteb.2019.100202

    Article  Google Scholar 

  48. Da Silva C et al (2017) Biochemical methane potential (BMP) tests: reducing test time by early parameter estimation. Waste Manag 71:19–24. https://doi.org/10.1016/j.wasman.2017.10.009

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CONACYT (Consejo Nacional de Ciencia y Tecnología) for scholarship No. 610719 provided and the Coordinación de la Investigación Científica (CIC) of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) for the resources and facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Apolinar Cortés.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 150 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruíz, J.C.J., del Carmen Chávez Parga, M. & Cortés, J.A. Increase in Methane Production Through the Application of Combined Pretreatments on Water Hyacinth Waste. Bioenerg. Res. 16, 357–368 (2023). https://doi.org/10.1007/s12155-022-10448-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10448-8

Keywords

Navigation