Skip to main content

Advertisement

Log in

A Comprehensive Review of Experimental Parameters in Bio-oil Upgrading from Pyrolysis of Biomass to Biofuel Through Catalytic Hydrodeoxygenation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Fossil fuel reserve depletion and environmental concerns have spurred substantial research to find alternative energy sources. Bio-oil derived from biomass pyrolysis has great potential to substitute fossil fuels. However, bio-oil physicochemical properties are far below the requirements for biofuels due to several issues such as low heating value, and high-water content, acidity, and viscosity. Bio-oil is unstable and tends to polymerize due to the high content of reactive oxygenates and molecular compounds, even during storage. Therefore, bio-oil without quality upgrading is not suitable for use as a fuel. A promising method to improve bio-oil properties is through catalytic hydrodeoxygenation (HDO) — a hydrogenolysis process for removing oxygen from the oxygen-containing compounds. However, the complex mixture of organic components in bio-oil renders the complexity of HDO, and the significant issues in HDO are coking and decreasing catalyst performance. Therefore, various approaches to overcome these issues have been developed. The final product distribution of HDO can be customized by tuning the experimental parameters such as catalyst acidity, pressure, temperature, types of solvents, and even reaction duration. In this review, the parameters of catalytic HDO are elaborated as functions to provide comprehensive options for constructing the strategy in practicing HDO of bio-oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Woolf D, Lehmann J, Lee DR (2016) Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration. Nat Commun 7:13160. https://doi.org/10.1038/ncomms13160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daioglou V, Doelman JC, Stehfest E et al (2017) Greenhouse gas emission curves for advanced biofuel supply chains. Nat Clim Chang 7:920–924. https://doi.org/10.1038/s41558-017-0006-8

    Article  CAS  Google Scholar 

  3. Staples MD, Malina R, Barrett SRH (2017) The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nat Energy 2:16202. https://doi.org/10.1038/nenergy.2016.202

    Article  CAS  Google Scholar 

  4. Sekewael SJ, Pratika RA, Hauli L, Amin AK, Utami M, Wijaya K (2022) Recent progres on sulfated nanozirconia as a solid acid catalyst. Catalysts 12:191. https://doi.org/10.3390/catal12020191

    Article  CAS  Google Scholar 

  5. Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716. https://doi.org/10.1016/j.renene.2017.04.035

    Article  CAS  Google Scholar 

  6. Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nat Commun 5:5282. https://doi.org/10.1038/ncomms6282

    Article  PubMed  Google Scholar 

  7. Zhou YJ, Kerkhoven EJ, Nielsen J (2018) Barriers and opportunities in bio-based production of hydrocarbons. Nat Energy 3:925–935. https://doi.org/10.1038/s41560-018-0197-x

    Article  CAS  Google Scholar 

  8. Pratika RA, Wijaya K, Trisunaryanti W (2021) Hydrothermal treatment of SO4/TiO2 and TiO2/CaO as heterogeneous catalysts for the conversion of Jatropha oil into biodiesel. J Environ Chem Eng 9:106547. https://doi.org/10.1016/j.jece.2021.106547

    Article  CAS  Google Scholar 

  9. Valdivia M, Galan JL, Laffarga J, Ramos JL (2016) Biofuels 2020: biorefineries based on lignocellulosic materials. Microb Biotechnol 9:585–594. https://doi.org/10.1111/1751-7915.12387

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sari RM, Gea S, Wirjosentono B, Hendrana S (2020) Improving quality and yield production of coconut shell charcoal through a modified pyrolysis reactor with Tar scrubber to reduce smoke pollution. Pol J Environ Stud 29:1815–1824. https://doi.org/10.15244/pjoes/110582

    Article  CAS  Google Scholar 

  11. Purba SE, Wijaya K, Wangsa Pratika RA, Hariani PL (2020) Effect of nickel concentration in natural zeolite as catalyst in hydrocracking process of used cooking oil. Asian J Chem 32:2773–2777. https://doi.org/10.14233/ajchem.2020.22708

    Article  CAS  Google Scholar 

  12. Zając G, Szyszlak-Bargłowicz J, Gołębiowski W, Szczepanik M (2018) Chemical characteristics of biomass ashes Energies 11:2885. https://doi.org/10.3390/en11112885

    Article  CAS  Google Scholar 

  13. Baloch HA, Nizamuddin S, Siddiqui MTH et al (2018) Recent advances in production and upgrading of bio-oil from biomass: a critical overview. J Environ Chem Eng 6:5101–5118. https://doi.org/10.1016/j.jece.2018.07.050

    Article  CAS  Google Scholar 

  14. Shibata M, Varman M, Tono Y, Miyafuji H, Saka S (2008) Characterization in chemical composition of the oil palm (Elaeis guineensis). J Jpn Inst Energy 87:383–388. https://doi.org/10.3775/jie.87.383

    Article  CAS  Google Scholar 

  15. Arena N, Lee J, Clift R (2016) Life Cycle Assessment of activated carbon production from coconut shells. J Clean Prod 125:68–77. https://doi.org/10.1016/j.jclepro.2016.03.073

    Article  CAS  Google Scholar 

  16. Gea S, Azizah N, Piliang AF, Siregar H (2018) The study of liquid smoke as substitutions in coagulating latex to the quality of crumb rubber. J Phys Conf Ser 1120:012051. https://doi.org/10.1088/1742-6596/1120/1/012051

    Article  CAS  Google Scholar 

  17. Sinaga MZE, Gea S, Panindia N, Sihombing YA (2018) The preparation of cellulose nanocomposite film from isolated cellulose of corncobs as food packaging. Orient J Chem 34:562–567. https://doi.org/10.13005/ojc/340166

    Article  CAS  Google Scholar 

  18. Barus DA, Ginting J, Ginting H et al (2019) The use of nanofibrils celulose of sugarcane bagasse as precursor in synthesizing carbon nanodots by hydrothermal method. J Phys Conf Ser 1321:022021. https://doi.org/10.1088/1742-6596/1321/2/022021

    Article  CAS  Google Scholar 

  19. Gea S, Zulfahmi Z, Yunus D et al (2018) The isolation of nanofibre cellulose from oil palm empty fruit bunch via steam explosion and hydrolysis with HCl 10%. J Phys Conf Ser 979:012063. https://doi.org/10.1088/1742-6596/979/1/012063

    Article  CAS  Google Scholar 

  20. Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  CAS  Google Scholar 

  21. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/ef0502397

    Article  CAS  Google Scholar 

  22. He Z, Wang X (2013) Required catalytic properties for alkane production from carboxylic acids: hydrodeoxygenation of acetic acid. J Energy Chem 22:883–894. https://doi.org/10.1016/S2095-4956(14)60268-0

    Article  Google Scholar 

  23. Lee H, Kim H, Yu MJ et al (2016) Catalytic hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci Rep 6:1–8. https://doi.org/10.1038/srep28765

    Article  CAS  Google Scholar 

  24. Yamaguchi A, Mimura N, Shirai M, Sato O (2017) Bond cleavage of lignin model compounds into aromatic monomers using supported metal catalysts in supercritical water. Sci Rep 7:1–7. https://doi.org/10.1038/srep46172

    Article  CAS  Google Scholar 

  25. Gea S, Andita D, Rahayu S, et al (2018) Preliminary study on the fabrication of cellulose nanocomposite film from oil palm empty fruit bunches partially solved into licl/dmac with the variation of dissolution time. J Phys Conf Ser 1116. https://doi.org/10.1088/1742-6596/1116/4/042012

  26. Wang H, Male J, Wang Y (2013) Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catal 3:1047–1070. https://doi.org/10.1021/cs400069z

    Article  CAS  Google Scholar 

  27. Hu X, Zhang Z, Gholizadeh M et al (2020) Coke formation during thermal treatment of bio-oil. Energy Fuels 34:7863–7914. https://doi.org/10.1021/acs.energyfuels.0c01323

    Article  CAS  Google Scholar 

  28. Zhang J, Li C, Guan W et al (2020) Deactivation and regeneration study of a co-promoted MoO3 catalyst in hydrogenolysis of dibenzofuran. Ind Eng Chem Res 59:4313–4321. https://doi.org/10.1021/acs.iecr.9b06442

    Article  CAS  Google Scholar 

  29. Yerrayya A, Shree Vishnu AK, Shreyas S et al (2020) Hydrothermal liquefaction of rice straw using methanol as co-solvent. Energies 13:1–19. https://doi.org/10.3390/en13102618

    Article  CAS  Google Scholar 

  30. Xu S, Cao B, Uzoejinwa BB et al (2020) Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics. Process Saf Environ Prot 137:34–48. https://doi.org/10.1016/j.psep.2020.02.001

    Article  CAS  Google Scholar 

  31. Wang S, Zhao S, Cheng X et al (2021) Study on two-step hydrothermal liquefaction of macroalgae for improving bio-oil. Bioresour Technol 319:124176. https://doi.org/10.1016/j.biortech.2020.124176

    Article  CAS  PubMed  Google Scholar 

  32. Yuan C, Wang S, Cao B et al (2019) Optimization of hydrothermal co-liquefaction of seaweeds with lignocellulosic biomass: merging 2nd and 3rd generation feedstocks for enhanced bio-oil production. Energy 173:413–422. https://doi.org/10.1016/j.energy.2019.02.091

    Article  CAS  Google Scholar 

  33. Chen D, Zhou J, Zhang Q, Zhu X (2014) Evaluation methods and research progresses in bio-oil storage stability. Renew Sustain Energy Rev 40:69–79. https://doi.org/10.1016/j.rser.2014.07.159

    Article  CAS  Google Scholar 

  34. Luo D, Yin W, Liu S et al (2018) Pyrolysis oil polymerization of water-soluble fraction during accelerated aging. Fuel 230:368–375. https://doi.org/10.1016/j.fuel.2018.05.017

    Article  CAS  Google Scholar 

  35. Jo H, Prajitno H, Zeb H, Kim J (2017) Upgrading low-boiling-fraction fast pyrolysis bio-oil using supercritical alcohol: understanding alcohol participation, chemical composition, and energy efficiency. Energy Convers Manag 148:197–209. https://doi.org/10.1016/j.enconman.2017.05.061

    Article  CAS  Google Scholar 

  36. Zhang L, Liu R, Yin R, Mei Y (2013) Upgrading of bio-oil from biomass fast pyrolysis in China: a review. Renew Sustain Energy Rev 24:66–72. https://doi.org/10.1016/j.rser.2013.03.027

    Article  CAS  Google Scholar 

  37. Zhang L, Yin R, Mei Y et al (2017) Characterization of crude and ethanol-stabilized bio-oils before and after accelerated aging treatment by comprehensive two-dimensional gas-chromatography with time-of-flight mass spectrometry. J Energy Inst 90:646–659. https://doi.org/10.1016/j.joei.2016.04.009

    Article  CAS  Google Scholar 

  38. Sakthivel R, Ramesh K, Mohamed Shameer P, Purnachandran R (2019) Experimental investigation on improvement of storage stability of bio-oil derived from intermediate pyrolysis of Calophyllum inophyllum seed cake. J Energy Inst 92:768–782. https://doi.org/10.1016/j.joei.2018.02.006

    Article  CAS  Google Scholar 

  39. Gómez N, Banks SW, Nowakowski DJ et al (2018) Effect of temperature on product performance of a high ash biomass during fast pyrolysis and its bio-oil storage evaluation. Fuel Process Technol 172:97–105. https://doi.org/10.1016/j.fuproc.2017.11.021

    Article  CAS  Google Scholar 

  40. Hilten RN, Das KC (2010) Comparison of three accelerated aging procedures to assess bio-oil stability. Fuel 89:2741–2749. https://doi.org/10.1016/j.fuel.2010.03.033

    Article  CAS  Google Scholar 

  41. Ren S, Ye XP (2018) Stability of crude bio-oil and its water-extracted fractions. J Anal Appl Pyrolysis 132:151–162. https://doi.org/10.1016/j.jaap.2018.03.005

    Article  CAS  Google Scholar 

  42. Shu R, Li R, Lin B et al (2020) High dispersed Ru/SiO2-ZrO2 catalyst prepared by polyol reduction method and its catalytic applications in the hydrodeoxygenation of phenolic compounds and pyrolysis lignin-oil. Fuel 265:116962. https://doi.org/10.1016/j.fuel.2019.116962

    Article  CAS  Google Scholar 

  43. Tran QK, Ly HV, Kwon B et al (2021) Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts. Renew Energy 173:886–895. https://doi.org/10.1016/j.renene.2021.03.138

    Article  CAS  Google Scholar 

  44. Li Z, Yi W, Li Z, et al (2020) Environmental effects hydrodeoxygenation of bio-oil and model compounds for production of chemical materials at atmospheric pressure over nickel-based zeolite catalysts. Energy Sources, Part A Recover Util Environ Eff. 1–13. https://doi.org/10.1080/15567036.2020.1765901

  45. Hu L, Wei XY, Zong ZM (2021) Ru/Hβ catalyst prepared by the deposition-precipitation method for enhancing hydrodeoxygenation ability of guaiacol and lignin-derived bio-oil to produce hydrocarbons. J Energy Inst 97:48–57. https://doi.org/10.1016/j.joei.2021.04.001

    Article  CAS  Google Scholar 

  46. Yang S, Chen G, Guan Q et al (2021) An efficient Pd/carbon-silica-alumina catalyst for the hydrodeoxygenation of bio-oil model compound phenol. Mol Catal 510:111681. https://doi.org/10.1016/j.mcat.2021.111681

    Article  CAS  Google Scholar 

  47. Remón J, Casales M, Gracia J et al (2021) Sustainable production of liquid biofuels and value-added platform chemicals by hydrodeoxygenation of lignocellulosic bio-oil over a carbon–neutral Mo2C/CNF catalyst. Chem Eng J 405:126705. https://doi.org/10.1016/j.cej.2020.126705

    Article  CAS  Google Scholar 

  48. Cheng S, Wei L, Julson J et al (2017) Upgrading pyrolysis bio-oil to biofuel over bifunctional Co-Zn/HZSM-5 catalyst in supercritical methanol. Energy Convers Manag 147:19–28. https://doi.org/10.1016/j.enconman.2017.05.044

    Article  CAS  Google Scholar 

  49. Yang T, Jie Y, Li B et al (2016) Catalytic hydrodeoxygenation of crude bio-oil over an unsupported bimetallic dispersed catalyst in supercritical ethanol. Fuel Process Technol 148:19–27. https://doi.org/10.1016/j.fuproc.2016.01.004

    Article  CAS  Google Scholar 

  50. Kim TS, Oh S, Kim JY et al (2014) Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy 68:437–443. https://doi.org/10.1016/j.energy.2014.03.004

    Article  CAS  Google Scholar 

  51. Zhang Q, Xu Y, Li Y et al (2015) Investigation on the esterification by using supercritical ethanol for bio-oil upgrading. Appl Energy 160:633–640. https://doi.org/10.1016/j.apenergy.2014.12.063

    Article  CAS  Google Scholar 

  52. Routray K, Barnett KJ, Huber GW (2016) Hydrodeoxygenation of pyrolysis oils Energy Technol 5:80–93. https://doi.org/10.1002/ente.201600084

    Article  CAS  Google Scholar 

  53. De Miguel MF, Groeneveld MJ, Kersten SRA et al (2011) Hydrodeoxygenation of pyrolysis oil fractions: process understanding and quality assessment through co-processing in refinery units. Energy Environ Sci 4:985–997. https://doi.org/10.1039/c0ee00523a

    Article  CAS  Google Scholar 

  54. Joshi N, Lawal A (2012) Hydrodeoxygenation of acetic acid in a microreactor. Chem Eng Sci 84:761–771. https://doi.org/10.1016/j.ces.2012.09.018

    Article  CAS  Google Scholar 

  55. Boscagli C, Yang C, Welle A et al (2017) Effect of pyrolysis oil components on the activity and selectivity of nickel-based catalysts during hydrotreatment. Appl Catal A Gen 544:161–172. https://doi.org/10.1016/j.apcata.2017.07.025

    Article  CAS  Google Scholar 

  56. Cordero-Lanzac T, Palos R, Hita I et al (2018) Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil. Appl Catal B Environ 239:513–524. https://doi.org/10.1016/j.apcatb.2018.07.073

    Article  CAS  Google Scholar 

  57. Gholizadeh M, Gunawan R, Hu X et al (2016) Importance of hydrogen and bio-oil inlet temperature during the hydrotreatment of bio-oil. Fuel Process Technol 150:132–140. https://doi.org/10.1016/j.fuproc.2016.05.014

    Article  CAS  Google Scholar 

  58. Mäki-Arvela P, Murzin DY (2017) Hydrodeoxygenation of lignin-derived phenols: from fundamental studies towards industrial applications. Catalysts 7. https://doi.org/10.3390/catal7090265

  59. Ge Y, Dababneh F, Li L (2017) Economic evaluation of lignocellulosic biofuel manufacturing considering integrated lignin waste conversion to hydrocarbon fuels. Procedia Manuf 10:112–122. https://doi.org/10.1016/j.promfg.2017.07.037

    Article  Google Scholar 

  60. Sanna A, Vispute TP, Huber GW (2015) Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Appl Catal B Environ 165:446–456. https://doi.org/10.1016/j.apcatb.2014.10.013

    Article  CAS  Google Scholar 

  61. Li X, Gunawan R, Wang Y et al (2014) Upgrading of bio-oil into advanced biofuels and chemicals. Part III. Changes in aromatic structure and coke forming propensity during the catalytic hydrotreatment of a fast pyrolysis bio-oil with Pd/C catalyst. Fuel 116:642–649. https://doi.org/10.1016/j.fuel.2013.08.046

    Article  CAS  Google Scholar 

  62. Li Y, Zhang C, Liu Y et al (2017) Coke formation on the surface of Ni / HZSM-5 and Ni-Cu / HZSM-5 catalysts during bio-oil hydrodeoxygenation. Fuel 189:23–31. https://doi.org/10.1016/j.fuel.2016.10.047

    Article  CAS  Google Scholar 

  63. Abu-Laban M, Muley PD, Hayes DJ, Boldor D (2017) Ex-situ up-conversion of biomass pyrolysis bio-oil vapors using Pt/Al2O3 nanostructured catalyst synergistically heated with steel balls via induction. Catal Today 291:3–12. https://doi.org/10.1016/j.cattod.2017.01.010

    Article  CAS  Google Scholar 

  64. Contreras-Mora J, Banerjee R, Bolton B et al (2018) Characterization and evaluation of carbon-supported noble metals for the hydrodeoxygenation of acetic acid. Org Process Res Dev 22:1628–1635. https://doi.org/10.1021/acs.oprd.8b00288

    Article  CAS  Google Scholar 

  65. Elkasabi Y, Liu Q, Choi YS et al (2017) Bio-oil hydrodeoxygenation catalysts produced using strong electrostatic adsorption. Fuel 207:510–521. https://doi.org/10.1016/j.fuel.2017.06.115

    Article  CAS  Google Scholar 

  66. Hellinger M, Baier S, Mortensen PM et al (2015) Continuous catalytic hydrodeoxygenation of guaiacol over Pt/SiO2 and Pt/H-MFI-90. Catalysts 5:1152–1166. https://doi.org/10.3390/catal5031152

    Article  CAS  Google Scholar 

  67. Lan X, Hensen EJM, Weber T (2018) Hydrodeoxygenation of guaiacol over Ni2P/SiO2–reaction mechanism and catalyst deactivation. Appl Catal A Gen 550:57–66. https://doi.org/10.1016/j.apcata.2017.10.018

    Article  CAS  Google Scholar 

  68. Shetty M, Murugappan K, Prasomsri T, Green WH, Leshkov YR (2015) Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol. J Catal 331:86–97. https://doi.org/10.1016/j.jcat.2015.07.034

    Article  CAS  Google Scholar 

  69. Ambursa MM, Ali TH, Lee HV et al (2016) Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu-Ni catalysts supported on metal oxides. Fuel 180:767–776. https://doi.org/10.1016/j.fuel.2016.04.045

    Article  CAS  Google Scholar 

  70. Ahmadi S, Reyhanitash E, Yuan Z et al (2017) Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation: effects of type of solvents. Renew Energy 114:376–382. https://doi.org/10.1016/j.renene.2017.07.041

    Article  CAS  Google Scholar 

  71. He Y, Bie Y, Lehtonen J et al (2019) Hydrodeoxygenation of guaiacol as a model compound of lignin-derived pyrolysis bio-oil over zirconia-supported Rh catalyst: process optimization and reaction kinetics. Fuel 239:1015–1027. https://doi.org/10.1016/j.fuel.2018.11.103

    Article  CAS  Google Scholar 

  72. Sharifzadeh M, Sadeqzadeh M, Guo M et al (2019) The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: review of the state of art and future research directions. Prog Energy Combust Sci 71:1–80. https://doi.org/10.1016/j.pecs.2018.10.006

    Article  Google Scholar 

  73. Huynh TM, Armbruster U, Nguyen LH et al (2015) Hydrodeoxygenation of bio-oil on bimetallic catalysts: from model compound to real feed. J Sustain Bioenergy Syst 05:151–160. https://doi.org/10.4236/jsbs.2015.54014

    Article  CAS  Google Scholar 

  74. Yildiz G, Ronsse F, Venderbosch R et al (2015) Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl Catal B Environ 168–169:203–211. https://doi.org/10.1016/j.apcatb.2014.12.044

    Article  CAS  Google Scholar 

  75. Shafaghat H, Lee IG, Jae J, et al (2019) Pd/C catalyzed transfer hydrogenation of pyrolysis oil using 2-propanol as hydrogen source. Chem Eng J 377:. https://doi.org/10.1016/j.cej.2018.09.147

  76. Hu HS, Wu YL, De YM (2018) Fractionation of bio-oil produced from hydrothermal liquefaction of microalgae by liquid-liquid extraction. Biomass Bioenerg 108:487–500. https://doi.org/10.1016/j.biombioe.2017.10.033

    Article  CAS  Google Scholar 

  77. Li Z, Kelkar S, Raycraft L et al (2014) A mild approach for bio-oil stabilization and upgrading: electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem 16:844–852. https://doi.org/10.1039/c3gc42303d

    Article  CAS  Google Scholar 

  78. Jo H, Verma D, Kim J (2018) Excellent aging stability of upgraded fast pyrolysis bio-oil in supercritical ethanol. Fuel 232:610–619. https://doi.org/10.1016/j.fuel.2018.06.005

    Article  CAS  Google Scholar 

  79. Hu X, Gunawan R, Mourant D et al (2017) Upgrading of bio-oil via acid-catalyzed reactions in alcohols — a mini review. Fuel Process Technol 155:2–19. https://doi.org/10.1016/j.fuproc.2016.08.020

    Article  CAS  Google Scholar 

  80. Prajitno H, Insyani R, Park J et al (2016) Non-catalytic upgrading of fast pyrolysis bio-oil in supercritical ethanol and combustion behavior of the upgraded oil. Appl Energy 172:12–22. https://doi.org/10.1016/j.apenergy.2016.03.093

    Article  CAS  Google Scholar 

  81. Zhang X, Chen L, Kong W et al (2015) Upgrading of bio-oil to boiler fuel by catalytic hydrotreatment and esterification in an efficient process. Energy 84:83–90. https://doi.org/10.1016/j.energy.2015.02.035

    Article  CAS  Google Scholar 

  82. Lee IG, Lee H, Park SH et al (2017) Catalytic hydrodeoxygenation of bio-oils derived from pyrolysis of cork oak using supercritical ethanol. J Nanosci Nanotechnol 17:2674–2677. https://doi.org/10.1166/jnn.2017.13348

    Article  CAS  Google Scholar 

  83. Oh S, Kim UJ, Choi IG, Choi JW (2016) Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C. Energy 113:116–123. https://doi.org/10.1016/j.energy.2016.07.027

    Article  CAS  Google Scholar 

  84. Arazo RO, de Luna MDG, Capareda SC (2017) Assessing biodiesel production from sewage sludge-derived bio-oil. Biocatal Agric Biotechnol 10:189–196. https://doi.org/10.1016/j.bcab.2017.03.011

    Article  CAS  Google Scholar 

  85. Xu Y, Zhang L, Chang J et al (2016) One step hydrogenation-esterification of model compounds and bio-oil to alcohols and esters over Raney Ni catalysts. Energy Convers Manag 108:78–84. https://doi.org/10.1016/j.enconman.2015.10.062

    Article  CAS  Google Scholar 

  86. Xu X, Zhang C, Liu Y et al (2013) Two-step catalytic hydrodeoxygenation of fast pyrolysis oil to hydrocarbon liquid fuels. Chemosphere 93:652–660. https://doi.org/10.1016/j.chemosphere.2013.06.060

    Article  CAS  PubMed  Google Scholar 

  87. Kim G, Seo J, Choi JW et al (2018) Two-step continuous upgrading of sawdust pyrolysis oil to deoxygenated hydrocarbons using hydrotreating and hydrodeoxygenating catalysts. Catal Today 303:130–135. https://doi.org/10.1016/j.cattod.2017.09.027

    Article  CAS  Google Scholar 

  88. Tanneru SK, Parapati DR, Steele PH (2014) Pretreatment of bio-oil followed by upgrading via esterification to boiler fuel. Energy 73:214–220. https://doi.org/10.1016/j.energy.2014.06.039

    Article  CAS  Google Scholar 

  89. Zhao W, Zhang X, Huang J et al (2018) Hydrogenation of bio-oil via gas-liquid two-phase discharge reaction system. Process Saf Environ Prot 118:167–177. https://doi.org/10.1016/j.psep.2018.03.035

    Article  CAS  Google Scholar 

  90. Mosallanejad A, Taghvaei H, Mirsoleimani-azizi SM et al (2017) Plasma upgrading of 4methylanisole: a novel approach for hydrodeoxygenation of bio oil without using a hydrogen source. Chem Eng Res Des 121:113–124. https://doi.org/10.1016/j.cherd.2017.03.011

    Article  CAS  Google Scholar 

  91. Taghvaei H, Rahimpour MR (2019) Catalytic hydrodeoxygenation of bio-oil using in situ generated hydrogen in plasma reactor: effects of allumina supported catalysts and plasma parameters. Process Saf Environ Prot 121:221–228. https://doi.org/10.1016/j.psep.2018.10.020

    Article  CAS  Google Scholar 

  92. Taghvaei H, Rahimpour MR, Bruggeman P (2017) Catalytic hydrodeoxygenation of anisole over nickel supported on plasma treated alumina-silica mixed oxides. RSC Adv 7:30990–30998. https://doi.org/10.1039/c7ra02594g

    Article  CAS  Google Scholar 

  93. Kay Lup AN, Abnisa F, Wan Daud WMA, Aroua MK (2017) A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. J Ind Eng Chem 56:1–34. https://doi.org/10.1016/j.jiec.2017.06.049

    Article  CAS  Google Scholar 

  94. Arun N, Sharma RV, Dalai AK (2015) Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: strategies for catalyst design and development. Renew Sustain Energy Rev 48:240–255. https://doi.org/10.1016/j.rser.2015.03.074

    Article  CAS  Google Scholar 

  95. Mo L, Yu W, Cai H et al (2018) Hydrodeoxygenation of bio-derived phenol to cyclohexane fuel catalyzed by bifunctional mesoporous organic-inorganic hybrids. Front Chem 6:1–9. https://doi.org/10.3389/fchem.2018.00216

    Article  CAS  Google Scholar 

  96. Chen S, Zhou G, Miao C (2019) Green and renewable bio-diesel produce from oil hydrodeoxygenation: strategies for catalyst development and mechanism. Renew Sustain Energy Rev 101:568–589. https://doi.org/10.1016/j.rser.2018.11.027

    Article  CAS  Google Scholar 

  97. Cheng S, Wei L, Julson J et al (2017) Upgrading pyrolysis bio-oil to hydrocarbon enriched biofuel over bifunctional Fe-Ni/HZSM-5 catalyst in supercritical methanol. Fuel Process Technol 167:117–126. https://doi.org/10.1016/j.fuproc.2017.06.032

    Article  CAS  Google Scholar 

  98. De S, Dutta S, Saha B (2016) Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catal Sci Technol 6:7364–7385. https://doi.org/10.1039/c6cy01370h

    Article  CAS  Google Scholar 

  99. Ranga C, Lødeng R, Alexiadis VI et al (2018) Effect of composition and preparation of supported MoO3 catalysts for anisole hydrodeoxygenation. Chem Eng J 335:120–132. https://doi.org/10.1016/j.cej.2017.10.090

    Article  CAS  Google Scholar 

  100. Yang J, Li S, Zhang L et al (2017) Hydrodeoxygenation of furans over Pd-FeOx/SiO2 catalyst under atmospheric pressure. Appl Catal B Environ 201:266–277. https://doi.org/10.1016/j.apcatb.2016.08.045

    Article  CAS  Google Scholar 

  101. Li X, Chen G, Liu C et al (2016) Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts : a critical review. Renew Sustain Energy Rev 71:296–308. https://doi.org/10.1016/j.rser.2016.12.057

    Article  CAS  Google Scholar 

  102. Tran N, Uemura Y, Chowdhury S, Ramli A (2014) A review of bio-oil upgrading by catalytic hydrodeoxygenation. Appl Mech Mater 625:255–258. https://doi.org/10.4028/www.scientific.net/AMM.625.255

    Article  CAS  Google Scholar 

  103. Zhang Z, Bi G, Zhang H et al (2019) Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO2-supported CoxNi1−xP catalysts. Fuel 247:26–35. https://doi.org/10.1016/j.fuel.2019.03.021

    Article  CAS  Google Scholar 

  104. Lee JH, Lee IG, Jeon W et al (2018) Catalytic upgrading of bio-tar over a MgNiMo/activated charcoal catalyst under supercritical ethanol conditions. Catal Today 316:237–243. https://doi.org/10.1016/j.cattod.2017.09.016

    Article  CAS  Google Scholar 

  105. Luo W, Sankar M, Beale AM et al (2015) High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone. Nat Commun 6:6540. https://doi.org/10.1038/ncomms7540

    Article  CAS  PubMed  Google Scholar 

  106. Zhang J, wei, Sun K kang, Li D dan, et al (2019) Pd-Ni bimetallic nanoparticles supported on active carbon as an efficient catalyst for hydrodeoxygenation of aldehydes. Appl Catal A Gen 569:190–195. https://doi.org/10.1016/j.apcata.2018.10.038

    Article  CAS  Google Scholar 

  107. Ambursa MM, Voon LH, Ching JJ et al (2019) Catalytic hydrodeoxygenation of dibenzofuran to fuel graded molecule over mesoporous supported bimetallic catalysts. Fuel 236:236–243. https://doi.org/10.1016/j.fuel.2018.08.162

    Article  CAS  Google Scholar 

  108. Widayatno WB, Guan G, Rizkiana J et al (2016) Upgrading of bio-oil from biomass pyrolysis over Cu-modified β-zeolite catalyst with high selectivity and stability. Appl Catal B Environ 186:166–172. https://doi.org/10.1016/j.apcatb.2016.01.006

    Article  CAS  Google Scholar 

  109. Gonçalves VOO, Talon WHSM, Kartnaller V et al (2021) Hydrodeoxygenation of m-cresol as a depolymerized lignin probe molecule: synergistic effect of NiCo supported alloys. Catal Today 377:135–144. https://doi.org/10.1016/j.cattod.2020.10.042

    Article  CAS  Google Scholar 

  110. Watson MJ (2014) Platinum group metal catalysed hydrodeoxygenation of model bio-oil compounds. Johnson Matthey Technol Rev 58:156–161. https://doi.org/10.1595/147106714X682157

    Article  Google Scholar 

  111. He Z, Wang X (2013) Hydrodeoxygenation of model compounds and catalytic systems for pyrolysis bio-oils upgrading. Catal Sustain Energy 1:28–52. https://doi.org/10.2478/cse-2012-0004

    Article  CAS  Google Scholar 

  112. Wan H, Chaudhari RV, Subramaniam B (2013) Aqueous phase hydrogenation of acetic acid and its promotional effect on p-cresol hydrodeoxygenation. Energy Fuels 27:487–493. https://doi.org/10.1021/ef301400c

    Article  CAS  Google Scholar 

  113. Ayodele OB (2017) Influence of oxalate ligand functionalization on Co/ZSM-5 activity in Fischer Tropsch synthesis and hydrodeoxygenation of oleic acid into hydrocarbon fuels. Sci Rep 7:1–14. https://doi.org/10.1038/s41598-017-09706-z

    Article  CAS  Google Scholar 

  114. Ahmadi S, Reyhanitash E, Yuan Z et al (2017) Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation : effects of type of solvents. Renew Energy 114:376–382. https://doi.org/10.1016/j.renene.2017.07.041

    Article  CAS  Google Scholar 

  115. Rinaldi N, Simanungkalit SP, Kristiani A (2017) Hydrodeoxygenation of bio-oil using different mesoporous supports of NiMo catalysts. AIP Conf Proc 1904. https://doi.org/10.1063/1.5011935

  116. Wang Y, Wu J, Wang S (2013) Hydrodeoxygenation of bio-oil over Pt-based supported catalysts: Importance of mesopores and acidity of the support to compounds with different oxygen contents. RSC Adv 3:12635–12640. https://doi.org/10.1039/c3ra41405a

    Article  CAS  Google Scholar 

  117. Sihombing JL, Gea S, Wirjosentono B et al (2020) Characteristic and catalytic performance of Co and Co-Mo metal impregnated in sarulla natural zeolite catalyst for hydrocracking of MEFA rubber seed oil into biogasoline fraction. Catalysts 10:121. https://doi.org/10.3390/catal10010121

    Article  CAS  Google Scholar 

  118. Purba SE, Wijaya K, Trisunaryanti W, Pratika RA (2020) Dealuminated and desilicated natural zeolite as a catalyst for hydrocracking of used cooking oil into biogasoline. Mediteran. J. Chem. 11:74–83. https://doi.org/10.13171/mjc02101141493kw

    Article  CAS  Google Scholar 

  119. Lee H, Kim YM, Lee IG et al (2016) Recent advances in the catalytic hydrodeoxygenation of bio-oil. Korean J Chem Eng 33:3299–3315. https://doi.org/10.1007/s11814-016-0214-3

    Article  CAS  Google Scholar 

  120. Ma W, Liu B, Ji X et al (2017) Catalytic co-cracking of distilled bio-oil and ethanol over Ni-ZSM-5/MCM-41 in a fixed-bed. Biomass Bioenerg 102:31–36. https://doi.org/10.1016/j.biombioe.2017.04.006

    Article  CAS  Google Scholar 

  121. Elkasabi Y, Mullen CA, Pighinelli ALMT, Boateng AA (2014) Hydrodeoxygenation of fast-pyrolysis bio-oils from various feedstocks using carbon-supported catalysts. Fuel Process Technol 123:11–18. https://doi.org/10.1016/j.fuproc.2014.01.039

    Article  CAS  Google Scholar 

  122. Liu Y, Baráth E, Shi H et al (2018) Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nat Catal 1:141–147. https://doi.org/10.1038/s41929-017-0015-z

    Article  CAS  Google Scholar 

  123. Cheng S, Wei L, Julson J et al (2017) Hydrocarbon bio-oil production from pyrolysis bio-oil using non-sulfide. Fuel Process Technol 162:68–78. https://doi.org/10.1016/j.fuproc.2017.04.001

    Article  CAS  Google Scholar 

  124. Xu Y, Li Y, Wang C et al (2017) In-situ hydrogenation of model compounds and raw bio-oil over Ni/CMK-3 catalyst. Fuel Process Technol 161:226–231. https://doi.org/10.1016/j.fuproc.2016.08.018

    Article  CAS  Google Scholar 

  125. Salam MA, Creaser D, Arora P, et al (2018) Influence of bio-oil phospholipid on the hydrodeoxygenation activity of NiMoS/Al2O3 catalyst. Catalysts 8. https://doi.org/10.3390/catal8100418

  126. Aliu E, Hart A, Wood J (2021) Mild-temperature hydrodeoxygenation of vanillin a typical bio-oil model compound to Creosol a potential future biofuel. Catal Today 379:70–79. https://doi.org/10.1016/j.cattod.2020.05.066

    Article  CAS  Google Scholar 

  127. Shafaghat H, Kim JM, Lee IG, et al (2019) Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts. Renew Energy 159–166. https://doi.org/10.1016/j.renene.2018.06.096

  128. Saleheen M, Verma AM, Mamun O et al (2019) Investigation of solvent effects on the hydrodeoxygenation of guaiacol over Ru catalysts. Catal Sci Technol 9:6253–6273. https://doi.org/10.1039/c9cy01763a

    Article  CAS  Google Scholar 

  129. Gunawardena D., Fernando S. (2013) Methods and applications of deoxygenation for the conversion of biomass to petrochemical products. Biomass Now - Cultiv Util 273–293. 10.5772.53983

  130. Alvarez MP, Burrezo PM, Iwamoto T et al (2014) Chameleon-like behaviour of cyclo[n]paraphenylenes in complexes with C70: on their impressive electronic and structural adaptability as probed by Raman spectroscopy. Faraday Discuss 4:1166–1169

    Google Scholar 

  131. Xiong WM, Fu Y, Zeng FX, Guo QX (2011) An in situ reduction approach for bio-oil hydroprocessing. Fuel Process Technol 92:1599–1605. https://doi.org/10.1016/j.fuproc.2011.04.005

    Article  CAS  Google Scholar 

  132. Cheng S, Wei L, Alsowij MR et al (2018) In situ hydrodeoxygenation upgrading of pine sawdust bio-oil to hydrocarbon biofuel using Pd/C catalyst. J Energy Inst 91:163–171. https://doi.org/10.1016/j.joei.2017.01.004

    Article  CAS  Google Scholar 

  133. Mortensen PM, Grunwaldt J, Jensen PA et al (2011) Applied Catalysis A : General A review of catalytic upgrading of bio-oil to engine fuels. App Catal A Gen 407:1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    Article  CAS  Google Scholar 

  134. Qureshi MS, Touronen J, Uusi-Kyyny P et al (2016) Solubility of hydrogen in bio-oil compounds. J Chem Thermodyn 102:406–412. https://doi.org/10.1016/j.jct.2016.07.010

    Article  CAS  Google Scholar 

  135. Gholizadeh M, Gunawan R, Hu X et al (2016) Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. Fuel Process Technol 148:175–183. https://doi.org/10.1016/j.fuproc.2016.03.002

    Article  CAS  Google Scholar 

  136. Jahromi H, Agblevor FA (2017) Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation. Energy 141:2186–2195. https://doi.org/10.1016/j.energy.2017.11.149

    Article  CAS  Google Scholar 

  137. Ambursa MM, Sudarsanam P, Voon LH et al (2017) Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process Technol 162:87–97. https://doi.org/10.1016/j.fuproc.2017.03.008

    Article  CAS  Google Scholar 

  138. Wu J, Shi J, Fu J et al (2016) Catalytic decarboxylation of fatty acids to aviation fuels over nickel supported on activated carbon. Sci Rep 6:1–8. https://doi.org/10.1038/srep27820

    Article  CAS  Google Scholar 

  139. Sitthisa S, Resasco DE (2011) Hydrodeoxygenation of furfural over supported metal catalysts: a comparative study of Cu, Pd and Ni. Catal Letters 141:784–791. https://doi.org/10.1007/s10562-011-0581-7

    Article  CAS  Google Scholar 

  140. Wang L, Liu Q, Jing C et al (2018) In-situ hydrodeoxygenation of a mixture of oxygenated compounds with hydrogen donor over ZrNi/Ir-ZSM-5+Pd/C. J Alloys Compd 753:664–672. https://doi.org/10.1016/j.jallcom.2018.03.356

    Article  CAS  Google Scholar 

  141. Gunawan R, Li X, Lievens C et al (2013) Upgrading of bio-oil into advanced biofuels and chemicals. Part I. Transformation of GC-detectable light species during the hydrotreatment of bio-oil using Pd/C catalyst. Fuel 111:709–717. https://doi.org/10.1016/j.fuel.2013.04.002

    Article  CAS  Google Scholar 

  142. Dohade MG, Dhepe PL (2018) One pot conversion of furfural to 2-methylfuran in the presence of PtCo bimetallic catalyst. Clean Technol Environ Policy 20:703–713. https://doi.org/10.1007/s10098-017-1408-z

    Article  CAS  Google Scholar 

  143. Roldugina EA, Naranov ER, Maximov AL, Karakhanov EA (2018) Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts. Appl Catal A Gen 553:24–35. https://doi.org/10.1016/j.apcata.2018.01.008

    Article  CAS  Google Scholar 

  144. Lin B, Li R, Shu R et al (2019) Synergistic effect of highly dispersed Ru and moderate acid site on the hydrodeoxygenation of phenolic compounds and raw bio-oil. J Energy Inst. https://doi.org/10.1016/j.joei.2019.07.009

    Article  Google Scholar 

  145. Wang Z, Fu Z, Lin W et al (2019) In-situ hydrodeoxygenation of furfural to furans over supported Ni catalysts in aqueous solution. Korean J Chem Eng 36:1235–1242. https://doi.org/10.1007/s11814-019-0305-z

    Article  CAS  Google Scholar 

  146. Qiang SS, Wang WC (2020) Experimental and techno-economic studies of upgrading heavy pyrolytic oils from wood chips into valuable fuels. J Clean Prod 277:124136. https://doi.org/10.1016/j.jclepro.2020.124136

    Article  CAS  Google Scholar 

  147. Bagnato G, Sanna A (2019) Process and techno-economic analysis for fuel and chemical production by hydrodeoxygenation of bio-oil. Catalysts 9. https://doi.org/10.3390/catal9121021

Download references

Acknowledgements

We would like to thank the Ministry of Education and Culture of the Republic of Indonesia through WCU Program with the contract number of 1879/UN5.1.R/SK/PPM/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karna Wijaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gea, S., Hutapea, Y.A., Piliang, A.F.R. et al. A Comprehensive Review of Experimental Parameters in Bio-oil Upgrading from Pyrolysis of Biomass to Biofuel Through Catalytic Hydrodeoxygenation. Bioenerg. Res. 16, 325–347 (2023). https://doi.org/10.1007/s12155-022-10438-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10438-w

Keywords

Navigation