Skip to main content
Log in

Iron-fortified Anaerobic Co-digestion Performance of Kitchen Waste and Pennisetum Hybrid

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Element iron as an essential trace metal has the function of facilitating the process of anaerobic digestion and consequently improving the biogas yield. Accordingly, the mixture ratio of kitchen waste and Pennisetum hybrid was optimized for the co-digestion system, and the effects of iron powder (IP), iron protoxide (FeO), and zero valent iron (nZVI) on the performance of the co-digestion system were studied under the batch mode and mesophilic condition. The results showed that the mixture ratio of 0.5:9.5 of kitchen waste and Pennisetum hybrid achieved a higher specific biogas yield of 338.32 ± 10.44 mL/g VS, which increased by 52.60% in comparison with that of the mono-digestion of Pennisetum hybrid. Based on the results, adding IP, FeO, and nZVI to the co-digestion system improves the biogas yield. Among them, a maximum specific biogas yield of 406.73 ± 61.28 mL/g VS was obtained by adding IP at the dosage of 0.5% and increased by 39.50% in comparison with the control system. For the co-digestion system with nZVI and FeO addition, an increase of 0.64% and 29.60% in specific biogas yields was achieved at the same dosage 0.5%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Kumar S Dutta S You G Luo D Tsang 2021 A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge J Clean Prod 127143 https://doi.org/10.1016/j.jclepro.2021.127143

  2. D Zhang Y Wei S Wu L Zhou 2021 Rapid initiation of methanogenesis in the anaerobic digestion of food waste by acclimatizing sludge with sulfidated nanoscale zerovalent iron BioresourceTechnol 341 https://doi.org/10.1016/j.biortech.2021.125805

  3. KR Chew HY Leong KS Khoo DVN Vo PL Show 2021 Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review Environ Chem Lett https://doi.org/10.1007/s10311-021-01220-z

  4. X Wang P Wang X Meng L Ren 2022 Performance and metagenomics analysis of anaerobic digestion of food waste with adding biochar supported nano zero-valent iron under mesophilic and thermophilic condition Sci Total Environ https://doi.org/10.1016/j.scitotenv.2022.153244

  5. ZA Shuang A Xm XA Dong A Wg YA Min ZA Pan et al 2021 Adding activated carbon to the system with added zero-valent iron further improves anaerobic digestion performance by alleviating ammonia inhibition and promoting DIET J Environ ChemEng https://doi.org/10.1016/j.jece.2021.106616

  6. Tasnim F, Iqbal SA, Chowdhury AR (2017) Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew Energ 109:434–439. https://doi.org/10.1016/j.renene.2017.03.044

    Article  CAS  Google Scholar 

  7. Wang X, Zhang L, Xi B, Sun W, Xia X, Zhu C et al (2015) Biogas production improvement and C/N control by natural clinoptilolite addition into anaerobic co-digestion of Phragmites australis, feces and kitchen waste. Bioresource Technol 180:192–199. https://doi.org/10.1016/j.biortech.2014.12.023

    Article  CAS  Google Scholar 

  8. Zhang Y, Feng Y, Quan X (2015) Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment. Waste Manage 38:297–302. https://doi.org/10.1016/j.wasman.2015.01.036

    Article  CAS  Google Scholar 

  9. Prochnow A, Heiermann M, Pl Chl M, Linke B, Idler C, Amon T et al (2009) Bioenergy from permanent grassland—a review: 1. Biogas Bioresource Technol 100:4931–4944. https://doi.org/10.1016/j.biortech.2009.05.070

    Article  CAS  Google Scholar 

  10. Chanakya HN, Reddy B, Modak J (2009) Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters—a case study from India. Renew Energ 34:416–420. https://doi.org/10.1016/j.renene.2008.05.003

    Article  CAS  Google Scholar 

  11. C Herrmann A Prochnow M Heiermann C Idler 2015 Biomass from landscape management of grassland used for biogas production: effects of harvest date and silage additives on feedstock quality and methane yield Grass Forage Sci 69 https://doi.org/10.1111/gfs.12086

  12. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenerg 25:335–361. https://doi.org/10.1016/S0961-9534(03)00030-8

    Article  Google Scholar 

  13. Zhao Q, He S, Li L, Sun Y, Ren H (2021) Links between Process Performance and Microbial Community of Pennisetum Hybrid Co-Digested with Municipal Solid Waste. Energies 14:3651. https://doi.org/10.3390/en14123651

    Article  CAS  Google Scholar 

  14. Zhang J, Loh KC, Lee J, Wang CH, Dai Y, Tong YW (2017) Three-stage anaerobic co-digestion of food waste and horse manure. Sci Rep-UK 7:1269. https://doi.org/10.1038/s41598-017-01408-w

    Article  CAS  Google Scholar 

  15. Li L, Li Y, Sun Y, Yuan Z, Lv P, Kang X et al (2018) Influence of the feedstock ratio and organic loading rate on the co-digestion performance of Pennisetum hybrid and Cow manure. Energ Fuel 32:5171–5180. https://doi.org/10.1021/acs.energyfuels.8b00015

    Article  CAS  Google Scholar 

  16. Wanli Z, Wanli X, Rundong L (2018) Real-time recovery strategies for volatile fatty acid-inhibited anaerobic digestion of food waste for methane production. Bioresource Technol 265:82. https://doi.org/10.1016/j.biortech.2018.05.098

    Article  CAS  Google Scholar 

  17. M Cerrillo L Burgos B Ruiz R Barrena J Moral-Vico X Font et al 2021 In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions Renew Energ 180 https://doi.org/10.1016/j.renene.2021.08.072

  18. Zhang, W., Guo, J., Wu, S., Dong, R. and Wang, B. (2012) Effects of Fe2+ on the anaerobic digestion of chicken manure: a batch study. 2012 Third International Conference on Digital Manufacturing & Automation. https://doi.org/10.1109/ICDMA.2012.259

  19. Kang X, Sun Y, Li and Lianhua, et al (2018) Improving methane production from anaerobic digestion of Pennisetum hybrid by alkaline pretreatment. Bioresource Technol 255:205–212. https://doi.org/10.1016/j.biortech.2017.12.001

    Article  CAS  Google Scholar 

  20. Wu P, Li L, Jiang J et al (2019) Effects of fermentative and non-fermentative additives on silage quality and anaerobic digestion performance of Pennisetum purpureum. BioresourceTechnol 297. https://doi.org/10.1016/j.biortech.2019.122425

  21. Oleszek M, Król A, Tys J, Matyka M, Kulik M (2014) Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresource Technol 156:303–306. https://doi.org/10.1016/j.biortech.2014.01.055

    Article  CAS  Google Scholar 

  22. Rattaapha W, Greenberg AE, Clesceri LS, Eaton AD, Eaton DL, Rice W et al (1985) Standards methods for the examination of water and wastewater. Health Lab Sci 4:137. https://doi.org/10.2105/AJPH.56.4.684-a

    Article  Google Scholar 

  23. Li D, Ye J, Zhen F, Wang Y, Yuan Z (2013) Effects of anaerobic co-digestion of different proportions between rice straw and chicken manure on biogas yield rate. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) 29:232–238. https://doi.org/10.3969/j.issn.1002-6819.2013.02.032. (in Chinese with English abstract)

  24. Jiang, J., Li, L., Cui, M., Zhang, F., Liu, Y. and Liu, Y. et al. (2018) Anaerobic digestion of kitchen waste: the effects of source, concentration, and temperature. Biochem Eng J S1369703X-S18301232X. https://doi.org/10.1016/j.bej.2018.04.004

  25. Dong L, Shengchu Y, Yuexiang and Zhidong, et al (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technol 189:319–326. https://doi.org/10.1016/j.biortech.2015.04.033

    Article  CAS  Google Scholar 

  26. Association, A. (1989) Standard methods for the examination of water and wastewater. 17th edition. American Public Health Association, American Water Works Association and Water Pollution Control Federation. http://hdl.handle.net/1969.3/24401

  27. Kayhanian M (1999) Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol Let 20:355–365. https://doi.org/10.1080/09593332008616828

    Article  CAS  Google Scholar 

  28. M Koyama S Yamamoto K Ishikawa S Ban T Toda 2017 Inhibition of anaerobic digestion by dissolved lignin derived from alkaline pre-treatment of an aquatic macrophyteChem Eng J S1035789602 https://doi.org/10.1016/j.cej.2016.11.076

  29. Wei W, Cai Z, Jie F, Xie GJ, Li A, Xu Z et al (2018) Zero valent iron enhances methane production from primary sludge in anaerobic digestion. Chem Eng J 351:1159–1165. https://doi.org/10.1016/j.cej.2018.06.160

    Article  CAS  Google Scholar 

  30. You Y, Han J, Chiu PC, Jin Y (2005) Removal and inactivation of waterborne viruses using zerovalent iron. Environ Sci Technol 39:9263–9269. https://doi.org/10.1021/es050829

    Article  CAS  PubMed  Google Scholar 

  31. Zhai N, Tong Z, Yin D, Yang G, Wang X, Ren G et al (2015) Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manage 38:126–131. https://doi.org/10.1016/j.wasman.2014.12.027

    Article  CAS  Google Scholar 

  32. Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez P (2010) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresource Technol 101:1141–1146. https://doi.org/10.1016/j.biortech.2009.09.057

    Article  CAS  Google Scholar 

  33. Yu Y, Guo J, Hu Z (2013) Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Res 47:6790–6800. https://doi.org/10.1016/j.watres.2013.09.012

    Article  CAS  Google Scholar 

  34. T Jia Z Wang H Shan Y Liu G Lei 2017 Effect of nanoscale zero-valent iron on sludge anaerobic digestion ResourConserv Recy https://doi.org/10.1016/j.resconrec.2017.09.007

  35. Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technol 98:130–134. https://doi.org/10.1016/j.biortech.2005.11.010

    Article  CAS  Google Scholar 

  36. Zhang L, Lee YW, Jahng D (2011) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource Technol 102:5048–5059. https://doi.org/10.1016/j.biortech.2011.01.082

    Article  CAS  Google Scholar 

  37. Zhang, H., Wang, H., Hu, K., Jiao, L., Zhao, M. and Yang, X. et al. (2019) Effect of dietary supplementation of Lactobacillus casei YYL3 and L. Plantarum YYL5 on growth, immune response and intestinal microbiota in channel catfish. Animals 9(12). https://doi.org/10.3390/ani9121005

  38. Yu B, Lou Z, Zhang D, Shan A, Zhang K (2015) Variations of organic matters and microbial community in thermophilic anaerobic digestion of waste activated sludge with the addition of ferric salts. Bioresource Technol 179:291–298. https://doi.org/10.1016/j.biortech.2014.12.011

    Article  CAS  Google Scholar 

  39. Xin K, Yu S, Shuang X, Wen F, Liu J, Li H (2017) Effect of Fe(0) addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Manage 71:719–727. https://doi.org/10.1016/j.wasman.2017.03.019

    Article  CAS  Google Scholar 

  40. G Kassab D Khater F Odeh K Shatanawi J Lier 2020 Impact of nanoscale magnetite and zero valent iron on the batch-wise anaerobic co-digestion of food waste and waste-activated sludge Water-Sui 12 https://doi.org/10.3390/w12051283

  41. Khanal SK, Fan L, Wong J, Di W, Oechsner H (2021) Anaerobic digestion beyond biogas. Bioresource Technol 337:125378. https://doi.org/10.1016/j.biortech.2021.125378

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21978289), the Guangdong Science and Technology Planning Project of Guangdong (Grant number 2017B020238005), the Key Project of Research and Development Plan in Jiangxi Province (Grant number 20214BBG74007), and the Natural Science Foundation of Guangdong Province (Grant number 2018A0303130335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wo, D., Bi, G., Li, L. et al. Iron-fortified Anaerobic Co-digestion Performance of Kitchen Waste and Pennisetum Hybrid. Bioenerg. Res. 16, 651–659 (2023). https://doi.org/10.1007/s12155-022-10426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10426-0

Keywords

Navigation