Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L (2016) International energy outlook 2016 with projections to 2040. Tech rep. https://doi.org/10.2172/1296780
Lee E, Rout PR, Kyun Y, Bae J (2020) Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater. Water Res 182:115965. https://doi.org/10.1016/j.watres.2020.115965
CAS
Article
PubMed
Google Scholar
Kundariya N, Mohanty SS, Varjani S, Ngo HH, Wong JWC, Taherzadeh MJ, Chang J-S, Ng HY, Kim S-H, Bui X-T (2021) A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresour Technol 342:125982. https://doi.org/10.1016/j.biortech.2021.125982
CAS
Article
PubMed
Google Scholar
Vyas S, Prajapati P, Shah AV, Varjani S (2022) Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci Total Environ 814:152802. https://doi.org/10.1016/j.scitotenv.2021.152802
CAS
Article
PubMed
Google Scholar
Varjani S, Shah AV, Vyas S, Srivastava VK (2021) Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: A systematic review. Chemosphere 282:130954. https://doi.org/10.1016/j.chemosphere.2021.130954
CAS
Article
PubMed
Google Scholar
Kwak W, Rout PR, Lee E, Bae J (2020) Influence of hydraulic retention time and temperature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment. Chem Eng J 386:123992. https://doi.org/10.1016/j.cej.2019.123992
CAS
Article
Google Scholar
Vyas S, Prajapati P, Shah AV, Srivastava VK, Varjani S (2022) Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: A special focus on anaerobic digestion. Fuel 311:122625. https://doi.org/10.1016/j.fuel.2021.122625
CAS
Article
Google Scholar
Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang J-S, Wong JWC, Bui X-T (2021) A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 20(1). https://doi.org/10.1186/s12934-021-01613-3
Shah AV, Srivastava VK, Mohanty SS, Varjani S (2021) Municipal solid waste as a sustainable resource for energy production: State-of-the-art review. J Environ Chem Eng 9(4):105717. https://doi.org/10.1016/j.jece.2021.105717
CAS
Article
Google Scholar
Irfanudeen NM, Prakash IA, Saundaryan R, Alagarraj K, Goel M, Kumar KR (2015) The potential of using low cost naturally available biogenic substrates for biological removal of chlorophenol. Bioresour Technol 196:707–711. https://doi.org/10.1016/j.biortech.2015.07.053
CAS
Article
PubMed
Google Scholar
Goel M, Ramesh M, Sreekrishnan TR (2009) Mixed culture acclimatization and biodegradation of chlorophenols in shake flasks: Effect of the inoculum source. Pract Period Hazard Toxic Radioact Waste Manag 13(1):29–34. https://doi.org/10.1061/(asce)1090-025x(2009)13:1(29)
CAS
Article
Google Scholar
Mohanty A, Rout PR, Dubey B, Meena SS, Pal P, Goel M (2021) A critical review on biogas production from edible and non-edible oil cakes. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01292-5
Lee E, Rout PR, Shin C, Bae J (2019) Effects of sodium hypochlorite concentration on the methanogenic activity in an anaerobic fluidized membrane bioreactor. Sci Total Environ 678:85–93. https://doi.org/10.1016/j.scitotenv.2019.04.396
CAS
Article
PubMed
Google Scholar
Shahid MK, Kashif A, Rout PR, Aslam M, Fuwad A, Choi Y, RB J, Park JH, Kumar G (2020) A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. J Environ Manage 270:110909. https://doi.org/10.1016/j.jenvman.2020.110909
CAS
Article
PubMed
Google Scholar
Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201. https://doi.org/10.1016/j.biortech.2016.10.006
CAS
Article
PubMed
Google Scholar
Prajapati P, Varjani S, Singhania RR, Patel AK, Awasthi MK, Sindhu R, Zhang Z, Binod P, Awasthi SK, Chaturvedi P (2021) Critical review on technological advancements for effective waste management of municipal solid waste – updates and way forward. Environ Technol Innov 23:101749. https://doi.org/10.1016/j.eti.2021.101749
CAS
Article
Google Scholar
He C, Chen C-L, Giannis A, Yang Y, Wang J-Y (2014) Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review. Renew Sust Energ Rev 39:1127–1142. https://doi.org/10.1016/j.rser.2014.07.141
CAS
Article
Google Scholar
Tommaso G, Chen W-T, Li P, Schideman L, Zhang Y (2015) Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresour Technol 178:139–146. https://doi.org/10.1016/j.biortech.2014.10.011
CAS
Article
PubMed
Google Scholar
Pham M, Schideman L, Sharma BK, Zhang Y, Chen W-T (2013) Effects of hydrothermal liquefaction on the fate of bioactive contaminants in manure and algal feedstocks. Bioresour Technol 149:126–135. https://doi.org/10.1016/j.biortech.2013.08.131
CAS
Article
PubMed
Google Scholar
Schwab A (2016) Bioenergy technologies office multi-year program plan. march 2016. Tech. rep. https://doi.org/10.2172/1245338
Adesra A, Srivastava VK, Varjani S (2021) Valorization of dairy wastes: Integrative approaches for value added products. Indian J Microbiol. https://doi.org/10.1007/s12088-021-00943-5
Reza MT, Freitas A, Yang X, Hiibel S, Lin H, Coronella CJ (2016) Hydrothermal carbonization (HTC) of cow manure: Carbon and nitrogen distributions in HTC products. Environ Prog Sustain Energy 35(4):1002–1011. https://doi.org/10.1002/ep.12312
CAS
Article
Google Scholar
Ghanim BM, Pandey DS, Kwapinski W, Leahy JJ (2016) Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresour Technol 216:373–380. https://doi.org/10.1016/j.biortech.2016.05.087
CAS
Article
PubMed
Google Scholar
Cao L, Yu IK, Cho D-W, Wang D, Tsang DC, Zhang S, Ding S, Wang L, Ok YS (2019) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol 273:251–258. https://doi.org/10.1016/j.biortech.2018.11.013
CAS
Article
PubMed
Google Scholar
Dutta S, Yu IK, Tsang DC, Ng YH, Ok YS, Sherwood J, Clark JH (2019) Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chem Eng J 372:992–1006. https://doi.org/10.1016/j.cej.2019.04.199
CAS
Article
Google Scholar
Huang HJ, Yuan XZ (2015) Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci 49:59–80. https://doi.org/10.1016/j.pecs.2015.01.003
Article
Google Scholar
Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Science 6(12):3765–3779
CAS
Article
Google Scholar
Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresour Technol 178:147–156. https://doi.org/10.1016/j.biortech.2014.09.132
CAS
Article
PubMed
Google Scholar
Guo Y, Wang S, Yeh T, Savage PE (2015) Catalytic gasification of indole in supercritical water. Appl Catal B 166–167:202–210. https://doi.org/10.1016/j.apcatb.2014.11.033
CAS
Article
Google Scholar
Su Y, Zhu W, Gong M, Zhou H, Fan Y, Amuzu-Sefordzi B (2015) Interaction between sewage sludge components lignin (phenol) and proteins (alanine) in supercritical water gasification. Int J Hydrog Energy 40(30):9125–9136. https://doi.org/10.1016/j.ijhydene.2015.05.072
CAS
Article
Google Scholar
Hu Y, Bassi A (2020) Extraction of biomolecules from microalgae. Handbook of Microalgae-Based Processes and Products, 283–308. https://doi.org/10.1016/b978-0-12-818536-0.00011-7
Gollakota A, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392. https://doi.org/10.1016/j.rser.2017.05.178
Article
Google Scholar
Leng L, Li J, Wen Z, Zhou W (2018) Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour Technol 256:529–542. https://doi.org/10.1016/j.biortech.2018.01.121
CAS
Article
PubMed
Google Scholar
Zhang Y, Chen W-T (2018) Hydrothermal liquefaction of protein-containing feedstocks. Direct Thermochemical Liquefaction Energy Appl:127–168. https://doi.org/10.1016/b978-0-08-101029-7.00004-7
Leng L, Yang L, Chen J, Leng S, Li H, Li H, Yuan X, Zhou W, Huang H (2020) A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresour Technol 315:123801. https://doi.org/10.1016/j.biortech.2020.123801
CAS
Article
PubMed
Google Scholar
Gu Y, Zhang X, Deal B, Han L (2019) Biological systems for treatment and valorization of wastewater generated from hydrothermal liquefaction of biomass and systems thinking: A review. Bioresour Technol 278:329–345. https://doi.org/10.1016/j.biortech.2019.01.127
CAS
Article
PubMed
Google Scholar
Mishra S, Mohanty K (2020) Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass – an integrated biorefinery approach for sustainable biocrude production. Energy Convers Manag 204:112312. https://doi.org/10.1016/j.enconman.2019.112312
CAS
Article
Google Scholar
Valdez PJ, Nelson MC, Wang HY, Lin XN, Savage PE (2012) Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass Bioenergy 46:317–331. https://doi.org/10.1016/j.biombioe.2012.08.009
CAS
Article
Google Scholar
Jena U, Das K, Kastner J (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102(10):6221–6229. https://doi.org/10.1016/j.biortech.2011.02.057
CAS
Article
PubMed
Google Scholar
Duan P-G, Yang S-K, Xu Y-P, Wang F, Zhao D, Weng Y-J, Shi X-L (2018) Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 155:734–745. https://doi.org/10.1016/j.energy.2018.05.044
CAS
Article
Google Scholar
Nelson M, Zhu L, Thiel A, Wu Y, Guan M, Minty J, Wang HY, Lin XN (2013) Microbial utilization of aqueous co-products from hydrothermal liquefaction of microalgae Nannochloropsis oculata. Bioresour Technol 136:522–528. https://doi.org/10.1016/j.biortech.2013.03.074
CAS
Article
PubMed
Google Scholar
Posmanik R, Labatut RA, Kim AH, Usack JG, Tester JW, Angenent LT (2017) Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour Technol 233:134–143. https://doi.org/10.1016/j.biortech.2017.02.095
CAS
Article
PubMed
Google Scholar
Watson J, Wang T, Si B, Chen W-T, Aierzhati A, Zhang Y (2020) Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Prog Energy Combust.Sci 77:100819. https://doi.org/10.1016/j.pecs.2019.100819
Article
Google Scholar
SundarRajan P, Gopinath K, Arun J, GracePavithra K, Joseph AA, Manasa S (2021) Insights into valuing the aqueous phase derived from hydrothermal liquefaction. Renew Sust Energ Rev 144:111019. https://doi.org/10.1016/j.rser.2021.111019
CAS
Article
Google Scholar
Du Z, Hu B, Shi A, Ma X, Cheng Y, Chen P, Liu Y, Lin X, Ruan R (2012) Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour Technol 126:354–357. https://doi.org/10.1016/j.biortech.2012.09.062
CAS
Article
PubMed
Google Scholar
McGaughy K, Hajer AA, Drabold E, Bayless D, Reza MT (2019) Algal remediation of wastewater produced from hydrothermally treated septage. Sustainability 11(12):3454. https://doi.org/10.3390/su11123454
CAS
Article
Google Scholar
Tarhan SZ, Koçer AT, Özçimen D, Gökalp İ (2021) Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. J Water Process Eng 40:101783. https://doi.org/10.1016/j.jwpe.2020.101783
Article
Google Scholar
Barreiro DL, Bauer M, Hornung U, Posten C, Kruse A, Prins W (2015) Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Res 9:99–106. https://doi.org/10.1016/j.algal.2015.03.007
Article
Google Scholar
Yang L, Si B, Tan X, Chu H, Zhou X, Zhang Y, Zhang Y, Zhao F (2018) Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresour Technol 266:349–356. https://doi.org/10.1016/j.biortech.2018.06.083
CAS
Article
PubMed
Google Scholar
Chen PH, Jimenez JLV, Rowland SM, Quinn JC, Laurens LM (2020) Nutrient recycle from algae hydrothermal liquefaction aqueous phase through a novel selective remediation approach. Algal Res 46:101776. https://doi.org/10.1016/j.algal.2019.101776
Article
Google Scholar
Satinover SJ, Mandal S, Connatser RM, Lewis SA, Rodriguez M, Mathews TJ, Billing J, Borole AP (2021) Green hydrogen from microalgal liquefaction byproducts with ammonia recovery and effluent recycle for developing circular processes. J Clean Prod 299:126834. https://doi.org/10.1016/j.jclepro.2021.126834
CAS
Article
Google Scholar
Kumar V, Jaiswal KK, Vlaskin MS, Nanda M, Tripathi MK, Gururani P, Kumar S, Joshi HC (2021) Hydrothermal liquefaction of municipal wastewater sludge and nutrient recovery from the aqueous phase. Biofuels:1–6. https://doi.org/10.1080/17597269.2020.1863627
Kumar V, Kumar S, Chauhan PK, Verma M, Bahuguna V, Joshi HC, Ahmad W, Negi P, Sharma N, Ramola B, Rautela I, Nanda M, Vlaskin MS (2019) Low-temperature catalyst based hydrothermal liquefaction of harmful macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-47664-w
Ahirwar A, Meignen G, Khan MJ, Khan N, Rai A, Schoefs B, Marchand J, Varjani S, Vinayak V (2021) Nanotechnological approaches to disrupt the rigid cell walled microalgae grown in wastewater for value-added biocompounds: commercial applications, challenges, and breakthrough. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01965-1
Dang B-T, Bui X-T, Tran DP, Ngo HH, Nghiem LD, Hoang T-K-D, Nguyen P-T, Nguyen HH, Vo T-K-Q, Lin C, Lin KYA, Varjani S (2022) Current application of algae derivatives for bioplastic production: A review. Bioresour Technol 347:126698. https://doi.org/10.1016/j.biortech.2022.126698
CAS
Article
PubMed
Google Scholar
Mohanty A, Mankoti M, Rout PR, Meena SS, Dewan S, Kalia B, Varjani S, Wong JW, Banu JR (2022) Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int J Food Microbiol 365:109538. https://doi.org/10.1016/j.ijfoodmicro.2022.109538
Article
PubMed
Google Scholar
Yen H-W, Chen P-W, Chen L-J (2015) The synergistic effects for the co-cultivation of oleaginous yeast- Rhodotorula glutinis and microalgae- Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152. https://doi.org/10.1016/j.biortech.2014.09.113
CAS
Article
PubMed
Google Scholar
Cai S, Hu C, Du S (2007) Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng 104(5):391–397. https://doi.org/10.1263/jbb.104.391
CAS
Article
PubMed
Google Scholar
Kitcha S, Cheirsilp B (2014) Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl Biochem Biotechnol 173(2):522–534. https://doi.org/10.1007/s12010-014-0859-5
CAS
Article
PubMed
Google Scholar
Gai C, Zhang Y, Chen W-T, Zhou Y, Schideman L, Zhang P, Tommaso G, Kuo C-T, Dong Y (2015) Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresour Technol 184:328–335. https://doi.org/10.1016/j.biortech.2014.10.118
CAS
Article
PubMed
Google Scholar
Panisko E, Wietsma T, Lemmon T, Albrecht K, Howe D (2015) Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks. Biomass Bioenergy 74:162–171. https://doi.org/10.1016/j.biombioe.2015.01.011
CAS
Article
Google Scholar
Varjani S, Pandey A, Upasani VN (2020) Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium – a microcosm approach. Sci Total Environ 745:141043. https://doi.org/10.1016/j.scitotenv.2020.141043
CAS
Article
PubMed
Google Scholar
Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ 737:139766. https://doi.org/10.1016/j.scitotenv.2020.139766
CAS
Article
PubMed
Google Scholar
Varjani S, Upasani VN (2021) Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 – a novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresour Technol 319:124240. https://doi.org/10.1016/j.biortech.2020.124240
CAS
Article
PubMed
Google Scholar
Zheng M, Schideman LC, Tommaso G, Chen W-T, Zhou Y, Nair K, Qian W, Zhang Y, Wang K (2017) Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. Energy Convers Manag 141:420–428. https://doi.org/10.1016/j.enconman.2016.10.034
CAS
Article
Google Scholar
Biller P, Ross A, Skill S, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn C (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1(1):70–76. https://doi.org/10.1016/j.algal.2012.02.002
CAS
Article
Google Scholar
Godwin CM, Hietala DC, Lashaway AR, Narwani A, Savage PE, Cardinale BJ (2017) Algal polycultures enhance coproduct recycling from hydrothermal liquefaction. Bioresour Technol 224:630–638. https://doi.org/10.1016/j.biortech.2016.11.105
CAS
Article
PubMed
Google Scholar
Leng L, Zhang W, Leng S, Chen J, Yang L, Li H, Jiang S, Huang H (2020) Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. Sci Total Environ 748:142383. https://doi.org/10.1016/j.scitotenv.2020.142383
CAS
Article
PubMed
Google Scholar
Mourya M, Khan MJ, Ahirwar A, Schoefs B, Marchand J, Rai A, Varjani S, Rajendran K, Banu JR, Vinayak V (2022) Latest trends and developments in microalgae as potential source for biofuels: The case of diatoms. Fuel 314:122738. https://doi.org/10.1016/j.fuel.2021.122738
CAS
Article
Google Scholar
Devda V, Chaudhary K, Varjani S, Pathak B, Patel AK, Singhania RR, Taherzadeh MJ, Ngo HH, Wong JWC, Guo W, Chaturvedi P (2021) Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered 12(1):4697–4718. https://doi.org/10.1080/21655979.2021.1946631
Article
PubMed
PubMed Central
Google Scholar
Alba LG, Torri C, Fabbri D, Kersten SR, Brilman DWW (2013) Microalgae growth on the aqueous phase from hydrothermal liquefaction of the same microalgae. Chem Eng J 228:214–223. https://doi.org/10.1016/j.cej.2013.04.097
CAS
Article
Google Scholar
Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6):3639–3646. https://doi.org/10.1021/ef100203u
CAS
Article
Google Scholar
Biller P, Ross A (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102(1):215–225. https://doi.org/10.1016/j.biortech.2010.06.028
CAS
Article
PubMed
Google Scholar
Duan P, Savage PE (2010) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50(1):52–61. https://doi.org/10.1021/ie100758s
CAS
Article
Google Scholar
Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ. Sci. 4(11):4587–4595
CAS
Article
Google Scholar
Sharma P, Gujjala LKS, Varjani S, Kumar S (2022) Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Sci Total Environ 813:152417. https://doi.org/10.1016/j.scitotenv.2021.152417
CAS
Article
PubMed
Google Scholar
Gaur VK, Gautam K, Sharma P, Gupta S, Pandey A, You S, Varjani S (2022) Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. Environ Res 209:112793. https://doi.org/10.1016/j.envres.2022.112793
CAS
Article
PubMed
Google Scholar
Valdez PJ, Savage PE (2013) A reaction network for the hydrothermal liquefaction of Nannochloropsis sp. Algal Res 2(4):416–425. https://doi.org/10.1016/j.algal.2013.08.002
Article
Google Scholar
Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2(4):445–454. https://doi.org/10.1016/j.algal.2013.08.005
Article
Google Scholar
Deng L, Ngo HH, Guo W, Chang SW, Nguyen DD, Pandey A, Varjani S, Hoang NB (2022) Recent advances in circular bioeconomy based clean technologies for sustainable environment. J Water Process Eng 46:102534. https://doi.org/10.1016/j.jwpe.2021.102534
Article
Google Scholar
Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res 45(1):11–36. https://doi.org/10.1016/j.watres.2010.08.037
CAS
Article
PubMed
Google Scholar
Jena U, Vaidyanathan N, Chinnasamy S, Das K (2011) Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresour Technol 102(3):3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111
CAS
Article
PubMed
Google Scholar
Hognon C, Delrue F, Texier J, Grateau M, Thiery S, Miller H, Roubaud A (2015) Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. growth studies on the recovered hydrothermal aqueous phase. Biomass Bioenergy 73:23–31. https://doi.org/10.1016/j.biombioe.2014.11.025
CAS
Article
Google Scholar
Chen L, Zhu T, Fernandez JSM, Chen S, Li D (2017) Recycling nutrients from a sequential hydrothermal liquefaction process for microalgae culture. Algal Res 27:311–317. https://doi.org/10.1016/j.algal.2017.09.023
Article
Google Scholar
Selvaratnam T, Reddy H, Muppaneni T, Holguin F, Nirmalakhandan N, Lammers PJ, Deng S (2015) Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Res 12:74–79. https://doi.org/10.1016/j.algal.2015.07.007
Article
Google Scholar
Barreiro DL, Gómez BR, Hornung U, Kruse A, Prins W (2015) Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor. Energy Fuels 29(10):6422–6432. https://doi.org/10.1021/acs.energyfuels.5b02099
CAS
Article
Google Scholar
Talbot C, Garcia-Moscoso J, Drake H, Stuart BJ, Kumar S (2016) Cultivation of microalgae using flash hydrolysis nutrient recycle. Algal Res 18:191–197. https://doi.org/10.1016/j.algal.2016.06.021
Article
Google Scholar
Rout PR, Dash RR, Bhunia P, Lee E, Bae J (2021) Comparison between a single unit bioreactor and an integrated bioreactor for nutrient removal from domestic wastewater. Sustain Energy Technol Assess 48:101620. https://doi.org/10.1016/j.seta.2021.101620
Article
Google Scholar
Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16(3):215–225. https://doi.org/10.1023/b:japh.0000048507.95878.b5
CAS
Article
Google Scholar
Lee E, Rout PR, Bae J (2021) The applicability of anaerobically treated domestic wastewater as a nutrient medium in hydroponic lettuce cultivation: Nitrogen toxicity and health risk assessment. Sci Total Environ 780:146482. https://doi.org/10.1016/j.scitotenv.2021.146482
CAS
Article
PubMed
Google Scholar
Patel GB, Shah KR, Shindhal T, Rakholiya P, Varjani S (2021) Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained actinomycete. Environ Technol Innov 23:101724. https://doi.org/10.1016/j.eti.2021.101724
CAS
Article
Google Scholar
Zhang L, Lu H, Zhang Y, Li B, Liu Z, Duan N, Liu M (2015) Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. J Appl Phycol 28(2):1031–1039. https://doi.org/10.1007/s10811-015-0640-3
CAS
Article
Google Scholar
Bagnoud-Velásquez M, Schmid-Staiger U, Peng G, Vogel F, Ludwig C (2015) First developments towards closing the nutrient cycle in a biofuel production process. Algal Res 8:76–82. https://doi.org/10.1016/j.algal.2014.12.012
Article
Google Scholar
Gurunathan RJ, Varjani BKS, Ngo HH, Gnansounou E (2022) Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environ. Res. 203:111815. https://doi.org/10.1016/j.envres.2021.111815
CAS
Article
PubMed
Google Scholar
Aruoja V, Sihtmäe M, Dubourguier H-C, Kahru A (2011) Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs. Chemosphere 84(10):1310–1320. https://doi.org/10.1016/j.chemosphere.2011.05.023
CAS
Article
PubMed
Google Scholar
Nakai S (2001) Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res 35(7):1855–1859. https://doi.org/10.1016/s0043-1354(00)00444-9
CAS
Article
PubMed
Google Scholar
Tsukahara K, Kimura T, Minowa T, Sawayama S, Yagishita T, Inoue S, Hanaoka T, Usui Y, Ogi T (2001) Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga. J Biosci Bioeng 91(3):311–313. https://doi.org/10.1016/s1389-1723(01)80140-7
CAS
Article
PubMed
Google Scholar
Deleebeeck NM, Laender FD, Chepurnov VA, Vyverman W, Janssen CR, Schamphelaere KAD (2009) A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water Res 43(7):1935–1947. https://doi.org/10.1016/j.watres.2009.01.019
CAS
Article
PubMed
Google Scholar
Huang HJ, Yuan XZ (2016) The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour Technol 200:991–998. https://doi.org/10.1016/j.biortech.2015.10.099
CAS
Article
PubMed
Google Scholar
Bagnoud-Velásquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catal Today 223:35–43. https://doi.org/10.1016/j.cattod.2013.12.001
CAS
Article
Google Scholar
Madsen RB, Biller P, Jensen MM, Becker J, Iversen BB, Glasius M (2016) Predicting the chemical composition of aqueous phase from hydrothermal liquefaction of model compounds and biomasses. Energy Fuels 30(12):10470–10483. https://doi.org/10.1021/acs.energyfuels.6b02007
CAS
Article
Google Scholar
Leng L, Yuan X, Huang H, Jiang H, Chen X, Zeng G (2014) The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour Technol 167:144–150. https://doi.org/10.1016/j.biortech.2014.05.119
CAS
Article
PubMed
Google Scholar
Yuan X, Leng L, Huang H, Chen X, Wang H, Xiao Z, Zhai Y, Chen H, Zeng G (2015) Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 120:645–652. https://doi.org/10.1016/j.chemosphere.2014.10.010
CAS
Article
PubMed
Google Scholar
Patel B, Guo M, Chong C, Sarudin SHM, Hellgardt K (2016) Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Sci Total Environ 568:489–497. https://doi.org/10.1016/j.scitotenv.2016.06.041
CAS
Article
PubMed
Google Scholar
Shanmugam SR, Adhikari S, Shakya R (2017) Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae. Bioresour Technol 230:43–48. https://doi.org/10.1016/j.biortech.2017.01.031
CAS
Article
PubMed
Google Scholar
Liang Y, Zhao X, Chi Z, Rover M, Johnston P, Brown R, Jarboe L, Wen Z (2013) Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: Reducing bio-oil toxicity and enhancing algal toxicity tolerance. Bioresour Technol 133:500–506. https://doi.org/10.1016/j.biortech.2013.01.134
CAS
Article
PubMed
Google Scholar
Chen K, Lyu H, Hao S, Luo G, Zhang S, Chen J (2015) Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Bioresour Technol 182:160–168. https://doi.org/10.1016/j.biortech.2015.01.124
CAS
Article
PubMed
Google Scholar
Zhou W, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew Sust Energ Rev 76:1163–1175. https://doi.org/10.1016/j.rser.2017.03.065
CAS
Article
Google Scholar
Paskuliakova A, Tonry S, Touzet N (2016) Microalgae isolation and selection for the treatment of landfill leachate. WIT Trans Ecol Environ. https://doi.org/10.2495/wp160071
Chen Z, Xiao Y, Liu T, Yuan M, Liu G, Fang J, Yang B (2021) Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms 9(12):2469. https://doi.org/10.3390/microorganisms9122469
CAS
Article
PubMed
PubMed Central
Google Scholar
Rani S, Gunjyal N, Ojha CSP, Singh RP (2021) Review of challenges for algae-based wastewater treatment: Strain selection, wastewater characteristics, abiotic, and biotic factors. J Hazard Toxic Radioact Waste 25(2):03120004. https://doi.org/10.1061/(asce)hz.2153-5515.0000578
CAS
Article
Google Scholar
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V (2021) Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 12(2):9531–9549. https://doi.org/10.1080/21655979.2021.1996748
CAS
Article
PubMed
PubMed Central
Google Scholar
Sharma J, Kumar V, Kumar SS, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Microalgal consortia for municipal wastewater treatment – lipid augmentation and fatty acid profiling for biodiesel production. J Photochem Photobiol B: Biol 202:111638. https://doi.org/10.1016/j.jphotobiol.2019.111638
CAS
Article
Google Scholar
A. Fallahi, N. Hajinajaf, O. Tavakoli, M.-H. Sarrafzadeh (2020) Cultivation of mixed microalgae using municipal wastewater: Biomass productivity, nutrient removal, and biochemical content. Iran J Biotechnol 18(4). https://doi.org/10.30498/IJB.2020.2586
Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14. https://doi.org/10.1016/j.wri.2015.02.002
Article
Google Scholar
Mahapatra DM, Chanakya H, Ramachandra T (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150. https://doi.org/10.1016/j.biortech.2014.03.130
CAS
Article
PubMed
Google Scholar
Zhou Y, Schideman L, Zhang Y, Yu G (2011) Environment-enhancing energy: A novel wastewater treatment system that maximizes algal biofuel production and minimizes greenhouse gas emissions. Proceedings of the Water Environment Federation 2011(7):7268–7282. https://doi.org/10.2175/193864711802793579
Article
Google Scholar
Wang S, Shi X, Palenik B (2016) Characterization of Picochlorum sp. use of wastewater generated from hydrothermal liquefaction as a nitrogen source. Algal Res 13:311–317. https://doi.org/10.1016/j.algal.2015.11.015
Article
Google Scholar
Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-J, Chang J-S (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497. https://doi.org/10.1016/j.biortech.2016.09.106
CAS
Article
PubMed
Google Scholar
Watson J, Zhang Y, Si B, Chen W-T, de Souza R (2018) Gasification of biowaste: A critical review and outlooks. Renew Sust Energ Rev 83:1–17. https://doi.org/10.1016/j.rser.2017.10.003
CAS
Article
Google Scholar
Khan MJ, Gordon R, Varjani S, Vinayak V (2022) Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. Sci Total Environ 823:153667. https://doi.org/10.1016/j.scitotenv.2022.153667
CAS
Article
PubMed
Google Scholar
Cheng J, Xu J, Huang Y, Li Y, Zhou J, Cen K (2015) Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresour Technol 177:240–246. https://doi.org/10.1016/j.biortech.2014.11.099
CAS
Article
PubMed
Google Scholar
Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214. https://doi.org/10.1016/j.biortech.2010.06.154
CAS
Article
PubMed
Google Scholar
Xu J, Zhao Y, Zhao G, Zhang H (2015) Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol 99(15):6493–6501. https://doi.org/10.1007/s00253-015-6537-x
CAS
Article
PubMed
Google Scholar
Fei Q, Fu R, Shang L, Brigham CJ, Chang HN (2014) Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst Eng 38(4):691–700. https://doi.org/10.1007/s00449-014-1308-0
CAS
Article
PubMed
Google Scholar
Li Z, Haifeng L, Zhang Y, Shanshan M, Baoming L, Zhidan L, Na D, Minsheng L, Buchun S, Jianwen L (2017) Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater. Int J Agric Biol Eng 10(2):194–204
Google Scholar
Miazek K, Kratky L, Sulc R, Jirout T, Aguedo M, Richel A, Goffin D (2017) Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review. Int J Mol Sci 18(7):1429. https://doi.org/10.3390/ijms18071429
CAS
Article
PubMed Central
Google Scholar
Ma J, Wang P, Chen J, Sun Y, Che J (2007) Differential response of green algal species Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa to six pesticides. Pol J Environ Stud 16(6)
Nguyen TKL, Ngo HH, Guo W, Nguyen TLH, Chang SW, Nguyen DD, Varjani S, Lei Z, Deng L (2021) Environmental impacts and greenhouse gas emissions assessment for energy recovery and material recycle of the wastewater treatment plant. Sci Total Environ 784:147135. https://doi.org/10.1016/j.scitotenv.2021.147135
CAS
Article
PubMed
Google Scholar
Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y (2017) Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives. Prog Energy Combust Sci 63:119–145. https://doi.org/10.1016/j.pecs.2017.07.003
Article
Google Scholar
Cheng D, Ngo HH, Guo W, Lee D, Nghiem DL, Zhang J, Liang S, Varjani S, Wang J (2020) Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics. Bioresour Technol 311:123588. https://doi.org/10.1016/j.biortech.2020.123588
CAS
Article
PubMed
Google Scholar
Rout PR, Bhunia P, Lee E, Bae J (2020) Microbial electrochemical systems (MESs): Promising alternatives for energy sustainability. Handb Environ Chem:223–251. https://doi.org/10.1007/698_2020_614
Sasaki K, Morita M, Sasaki D, Hirano HI, Matsumoto N, Watanabe A, Ohmura N, Igarashi Y (2011) A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry. Bioresour Technol 102(13):6837–6842. https://doi.org/10.1016/j.biortech.2011.04.022
CAS
Article
PubMed
Google Scholar
Koch C, Kuchenbuch A, Kretzschmar J, Wedwitschka H, Liebetrau J, Müller S, Harnisch F (2015) Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome. RSC Advances 5(40):31329–31340. https://doi.org/10.1039/c5ra03496e
CAS
Article
Google Scholar
Samani S, Abdoli MA, Karbassi A, Amin MM (2016) Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor. Water Sci Technol 74(3):606–615. https://doi.org/10.2166/wst.2016.243
CAS
Article
PubMed
Google Scholar
Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N (2015) Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour Technol 175:68–74. https://doi.org/10.1016/j.biortech.2014.10.052
CAS
Article
PubMed
Google Scholar
Feng Q, Song Y-C, Bae B-U (2016) Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour Technol 220:500–508. https://doi.org/10.1016/j.biortech.2016.08.085
CAS
Article
PubMed
Google Scholar
Marone A, Carmona-Martínez A, Sire Y, Meudec E, Steyer J, Bernet N, Trably E (2016) Bioelectrochemical treatment of table olive brine processing wastewater for biogas production and phenolic compounds removal. Water Res 100:316–325. https://doi.org/10.1016/j.watres.2016.05.008
CAS
Article
PubMed
Google Scholar
Kondaveeti S, Min B (2015) Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Res 87:137–144. https://doi.org/10.1016/j.watres.2015.09.011
CAS
Article
PubMed
Google Scholar
Rashid N, Cui Y-F, Rehman MSU, Han J-I (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456–457:91–94. https://doi.org/10.1016/j.scitotenv.2013.03.067
CAS
Article
PubMed
Google Scholar
Ramanathan G, Birthous RS, Abirami D, Highcourt D et al (2011) Efficacy of marine microalgae as exoelectrogen in microbial fuel cell system for bioelectricity generation. World J Fish Mar Sci 3(1):79–87
Google Scholar
Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Pandey A, Sharma P, Varjani S, Nguyen TAH, Hoang NB (2022) A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. Sci Total Environ 811:152261. https://doi.org/10.1016/j.scitotenv.2021.152261
CAS
Article
PubMed
Google Scholar
Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629–3637. https://doi.org/10.1021/es100125h
CAS
Article
PubMed
Google Scholar
Xiao L, He Z (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sust Energ Rev 37:550–559. https://doi.org/10.1016/j.rser.2014.05.066
CAS
Article
Google Scholar
Cherad R, Onwudili J, Biller P, Williams P, Ross A (2016) Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel 166:24–28. https://doi.org/10.1016/j.fuel.2015.10.088
CAS
Article
Google Scholar
Guo B, Yang B, Weil P, Zhang S, Hornung U, Dahmen N (2022) The effect of dichloromethane on product separation during continuous hydrothermal liquefaction of Chlorella vulgaris and aqueous product recycling for algae cultivation. Energy Fuels 36(2):922–931. https://doi.org/10.1021/acs.energyfuels.1c02523
CAS
Article
Google Scholar
Li Y, Tarpeh WA, Nelson KL, Strathmann TJ (2018) Quantitative evaluation of an integrated system for valorization of wastewater algae as bio-oil, fuel gas, and fertilizer products. Environ Sci Technol 52(21):12717–12727. https://doi.org/10.1021/acs.est.8b04035
CAS
Article
PubMed
Google Scholar
Shan Y-Q, Yin L-X, Djandja OS, Wang Z-C, Duan P-G (2021) Supercritical water gasification of waste water produced from hydrothermal liquefaction of microalgae over ru catalyst for production of h2 rich gas fuel. Fuel 292:120288. https://doi.org/10.1016/j.fuel.2021.120288
CAS
Article
Google Scholar
Nurcahyani PR, Matsumura Y (2021) Reutilization of algal supercritical water gasification waste for microalgae Chlorella vulgaris cultivation. ACS Omega 6(19):12551–12556. https://doi.org/10.1021/acsomega.1c00476
CAS
Article
PubMed
PubMed Central
Google Scholar
Fernandez S, Srinivas K, Schmidt AJ, Swita MS, Ahring BK (2018) Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresour Technol 247:250–258. https://doi.org/10.1016/j.biortech.2017.09.030
CAS
Article
PubMed
Google Scholar
Shanmugam SR, Adhikari S, Nam H, Sajib SK (2018) Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures. Biomass Bioenergy 108:479–486. https://doi.org/10.1016/j.biombioe.2017.10.034
CAS
Article
Google Scholar
Li R, Liu D, Zhang Y, Zhou J, Tsang YF, Liu Z, Duan N, Zhang Y (2019) Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci Total Environ 651:61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175
CAS
Article
PubMed
Google Scholar