Skip to main content

Recent Advancements in Microalgal Mediated Valorisation of Wastewater from Hydrothermal Liquefaction of Biomass

Abstract

Hydrothermal liquefaction (HTL) is an evolving technology that can convert waste with high moisture and low energy content to electricity, heat, hydrogen and other synthetic fuels more efficiently. The lee side is that the HTL process produces enormous amounts of wastewaters (HTWW), having high organic and nutrient load. The discharge of the HTWW would contaminate the environment and result in the loss of valuable bioenergy sources. The valorisation of HTWW has drawn considerable interest. Therefore, this review highlights the valorisation of wastewater during the HTL of biomass. The review paper begins with the discussion of the role of microalgae in valorizing the HTWW. The survey illustrates that the selection of appropriate technology is dependent on biomass characteristics of the microalgae. Finally, potential research opportunities are recommended to improve the viability of the HTL wastewater valorisation for bioenergy production. Overall, this review concludes that combining various processes, such as microalgae-anaerobic digestion, and bio-electrochemical system - microalgae-anaerobic digestion would be beneficial in maximizing HTWW valorisation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Not applicable

Code availability

Not applicable

References

  1. Conti J, Holtberg P, Diefenderfer J, LaRose A, Turnure JT, Westfall L (2016) International energy outlook 2016 with projections to 2040. Tech rep. https://doi.org/10.2172/1296780

  2. Lee E, Rout PR, Kyun Y, Bae J (2020) Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater. Water Res 182:115965. https://doi.org/10.1016/j.watres.2020.115965

    CAS  Article  PubMed  Google Scholar 

  3. Kundariya N, Mohanty SS, Varjani S, Ngo HH, Wong JWC, Taherzadeh MJ, Chang J-S, Ng HY, Kim S-H, Bui X-T (2021) A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresour Technol 342:125982. https://doi.org/10.1016/j.biortech.2021.125982

    CAS  Article  PubMed  Google Scholar 

  4. Vyas S, Prajapati P, Shah AV, Varjani S (2022) Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives. Sci Total Environ 814:152802. https://doi.org/10.1016/j.scitotenv.2021.152802

    CAS  Article  PubMed  Google Scholar 

  5. Varjani S, Shah AV, Vyas S, Srivastava VK (2021) Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: A systematic review. Chemosphere 282:130954. https://doi.org/10.1016/j.chemosphere.2021.130954

    CAS  Article  PubMed  Google Scholar 

  6. Kwak W, Rout PR, Lee E, Bae J (2020) Influence of hydraulic retention time and temperature on the performance of an anaerobic ammonium oxidation fluidized bed membrane bioreactor for low-strength ammonia wastewater treatment. Chem Eng J 386:123992. https://doi.org/10.1016/j.cej.2019.123992

    CAS  Article  Google Scholar 

  7. Vyas S, Prajapati P, Shah AV, Srivastava VK, Varjani S (2022) Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: A special focus on anaerobic digestion. Fuel 311:122625. https://doi.org/10.1016/j.fuel.2021.122625

    CAS  Article  Google Scholar 

  8. Mohanty SS, Koul Y, Varjani S, Pandey A, Ngo HH, Chang J-S, Wong JWC, Bui X-T (2021) A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microb Cell Fact 20(1). https://doi.org/10.1186/s12934-021-01613-3

  9. Shah AV, Srivastava VK, Mohanty SS, Varjani S (2021) Municipal solid waste as a sustainable resource for energy production: State-of-the-art review. J Environ Chem Eng 9(4):105717. https://doi.org/10.1016/j.jece.2021.105717

    CAS  Article  Google Scholar 

  10. Irfanudeen NM, Prakash IA, Saundaryan R, Alagarraj K, Goel M, Kumar KR (2015) The potential of using low cost naturally available biogenic substrates for biological removal of chlorophenol. Bioresour Technol 196:707–711. https://doi.org/10.1016/j.biortech.2015.07.053

    CAS  Article  PubMed  Google Scholar 

  11. Goel M, Ramesh M, Sreekrishnan TR (2009) Mixed culture acclimatization and biodegradation of chlorophenols in shake flasks: Effect of the inoculum source. Pract Period Hazard Toxic Radioact Waste Manag 13(1):29–34. https://doi.org/10.1061/(asce)1090-025x(2009)13:1(29)

    CAS  Article  Google Scholar 

  12. Mohanty A, Rout PR, Dubey B, Meena SS, Pal P, Goel M (2021) A critical review on biogas production from edible and non-edible oil cakes. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01292-5

  13. Lee E, Rout PR, Shin C, Bae J (2019) Effects of sodium hypochlorite concentration on the methanogenic activity in an anaerobic fluidized membrane bioreactor. Sci Total Environ 678:85–93. https://doi.org/10.1016/j.scitotenv.2019.04.396

    CAS  Article  PubMed  Google Scholar 

  14. Shahid MK, Kashif A, Rout PR, Aslam M, Fuwad A, Choi Y, RB J, Park JH, Kumar G (2020) A brief review of anaerobic membrane bioreactors emphasizing recent advancements, fouling issues and future perspectives. J Environ Manage 270:110909. https://doi.org/10.1016/j.jenvman.2020.110909

    CAS  Article  PubMed  Google Scholar 

  15. Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201. https://doi.org/10.1016/j.biortech.2016.10.006

    CAS  Article  PubMed  Google Scholar 

  16. Prajapati P, Varjani S, Singhania RR, Patel AK, Awasthi MK, Sindhu R, Zhang Z, Binod P, Awasthi SK, Chaturvedi P (2021) Critical review on technological advancements for effective waste management of municipal solid waste – updates and way forward. Environ Technol Innov 23:101749. https://doi.org/10.1016/j.eti.2021.101749

    CAS  Article  Google Scholar 

  17. He C, Chen C-L, Giannis A, Yang Y, Wang J-Y (2014) Hydrothermal gasification of sewage sludge and model compounds for renewable hydrogen production: A review. Renew Sust Energ Rev 39:1127–1142. https://doi.org/10.1016/j.rser.2014.07.141

    CAS  Article  Google Scholar 

  18. Tommaso G, Chen W-T, Li P, Schideman L, Zhang Y (2015) Chemical characterization and anaerobic biodegradability of hydrothermal liquefaction aqueous products from mixed-culture wastewater algae. Bioresour Technol 178:139–146. https://doi.org/10.1016/j.biortech.2014.10.011

    CAS  Article  PubMed  Google Scholar 

  19. Pham M, Schideman L, Sharma BK, Zhang Y, Chen W-T (2013) Effects of hydrothermal liquefaction on the fate of bioactive contaminants in manure and algal feedstocks. Bioresour Technol 149:126–135. https://doi.org/10.1016/j.biortech.2013.08.131

    CAS  Article  PubMed  Google Scholar 

  20. Schwab A (2016) Bioenergy technologies office multi-year program plan. march 2016. Tech. rep. https://doi.org/10.2172/1245338

  21. Adesra A, Srivastava VK, Varjani S (2021) Valorization of dairy wastes: Integrative approaches for value added products. Indian J Microbiol. https://doi.org/10.1007/s12088-021-00943-5

  22. Reza MT, Freitas A, Yang X, Hiibel S, Lin H, Coronella CJ (2016) Hydrothermal carbonization (HTC) of cow manure: Carbon and nitrogen distributions in HTC products. Environ Prog Sustain Energy 35(4):1002–1011. https://doi.org/10.1002/ep.12312

    CAS  Article  Google Scholar 

  23. Ghanim BM, Pandey DS, Kwapinski W, Leahy JJ (2016) Hydrothermal carbonisation of poultry litter: Effects of treatment temperature and residence time on yields and chemical properties of hydrochars. Bioresour Technol 216:373–380. https://doi.org/10.1016/j.biortech.2016.05.087

    CAS  Article  PubMed  Google Scholar 

  24. Cao L, Yu IK, Cho D-W, Wang D, Tsang DC, Zhang S, Ding S, Wang L, Ok YS (2019) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol 273:251–258. https://doi.org/10.1016/j.biortech.2018.11.013

    CAS  Article  PubMed  Google Scholar 

  25. Dutta S, Yu IK, Tsang DC, Ng YH, Ok YS, Sherwood J, Clark JH (2019) Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chem Eng J 372:992–1006. https://doi.org/10.1016/j.cej.2019.04.199

    CAS  Article  Google Scholar 

  26. Huang HJ, Yuan XZ (2015) Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci 49:59–80. https://doi.org/10.1016/j.pecs.2015.01.003

    Article  Google Scholar 

  27. Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energy Environ Science 6(12):3765–3779

    CAS  Article  Google Scholar 

  28. Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: Developments from batch to continuous process. Bioresour Technol 178:147–156. https://doi.org/10.1016/j.biortech.2014.09.132

    CAS  Article  PubMed  Google Scholar 

  29. Guo Y, Wang S, Yeh T, Savage PE (2015) Catalytic gasification of indole in supercritical water. Appl Catal B 166–167:202–210. https://doi.org/10.1016/j.apcatb.2014.11.033

    CAS  Article  Google Scholar 

  30. Su Y, Zhu W, Gong M, Zhou H, Fan Y, Amuzu-Sefordzi B (2015) Interaction between sewage sludge components lignin (phenol) and proteins (alanine) in supercritical water gasification. Int J Hydrog Energy 40(30):9125–9136. https://doi.org/10.1016/j.ijhydene.2015.05.072

    CAS  Article  Google Scholar 

  31. Hu Y, Bassi A (2020) Extraction of biomolecules from microalgae. Handbook of Microalgae-Based Processes and Products, 283–308. https://doi.org/10.1016/b978-0-12-818536-0.00011-7

  32. Gollakota A, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sust Energ Rev 81:1378–1392. https://doi.org/10.1016/j.rser.2017.05.178

    Article  Google Scholar 

  33. Leng L, Li J, Wen Z, Zhou W (2018) Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour Technol 256:529–542. https://doi.org/10.1016/j.biortech.2018.01.121

    CAS  Article  PubMed  Google Scholar 

  34. Zhang Y, Chen W-T (2018) Hydrothermal liquefaction of protein-containing feedstocks. Direct Thermochemical Liquefaction Energy Appl:127–168. https://doi.org/10.1016/b978-0-08-101029-7.00004-7

  35. Leng L, Yang L, Chen J, Leng S, Li H, Li H, Yuan X, Zhou W, Huang H (2020) A review on pyrolysis of protein-rich biomass: Nitrogen transformation. Bioresour Technol 315:123801. https://doi.org/10.1016/j.biortech.2020.123801

    CAS  Article  PubMed  Google Scholar 

  36. Gu Y, Zhang X, Deal B, Han L (2019) Biological systems for treatment and valorization of wastewater generated from hydrothermal liquefaction of biomass and systems thinking: A review. Bioresour Technol 278:329–345. https://doi.org/10.1016/j.biortech.2019.01.127

    CAS  Article  PubMed  Google Scholar 

  37. Mishra S, Mohanty K (2020) Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass – an integrated biorefinery approach for sustainable biocrude production. Energy Convers Manag 204:112312. https://doi.org/10.1016/j.enconman.2019.112312

    CAS  Article  Google Scholar 

  38. Valdez PJ, Nelson MC, Wang HY, Lin XN, Savage PE (2012) Hydrothermal liquefaction of Nannochloropsis sp.: Systematic study of process variables and analysis of the product fractions. Biomass Bioenergy 46:317–331. https://doi.org/10.1016/j.biombioe.2012.08.009

    CAS  Article  Google Scholar 

  39. Jena U, Das K, Kastner J (2011) Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresour Technol 102(10):6221–6229. https://doi.org/10.1016/j.biortech.2011.02.057

    CAS  Article  PubMed  Google Scholar 

  40. Duan P-G, Yang S-K, Xu Y-P, Wang F, Zhao D, Weng Y-J, Shi X-L (2018) Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 155:734–745. https://doi.org/10.1016/j.energy.2018.05.044

    CAS  Article  Google Scholar 

  41. Nelson M, Zhu L, Thiel A, Wu Y, Guan M, Minty J, Wang HY, Lin XN (2013) Microbial utilization of aqueous co-products from hydrothermal liquefaction of microalgae Nannochloropsis oculata. Bioresour Technol 136:522–528. https://doi.org/10.1016/j.biortech.2013.03.074

    CAS  Article  PubMed  Google Scholar 

  42. Posmanik R, Labatut RA, Kim AH, Usack JG, Tester JW, Angenent LT (2017) Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresour Technol 233:134–143. https://doi.org/10.1016/j.biortech.2017.02.095

    CAS  Article  PubMed  Google Scholar 

  43. Watson J, Wang T, Si B, Chen W-T, Aierzhati A, Zhang Y (2020) Valorization of hydrothermal liquefaction aqueous phase: pathways towards commercial viability. Prog Energy Combust.Sci 77:100819. https://doi.org/10.1016/j.pecs.2019.100819

    Article  Google Scholar 

  44. SundarRajan P, Gopinath K, Arun J, GracePavithra K, Joseph AA, Manasa S (2021) Insights into valuing the aqueous phase derived from hydrothermal liquefaction. Renew Sust Energ Rev 144:111019. https://doi.org/10.1016/j.rser.2021.111019

    CAS  Article  Google Scholar 

  45. Du Z, Hu B, Shi A, Ma X, Cheng Y, Chen P, Liu Y, Lin X, Ruan R (2012) Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresour Technol 126:354–357. https://doi.org/10.1016/j.biortech.2012.09.062

    CAS  Article  PubMed  Google Scholar 

  46. McGaughy K, Hajer AA, Drabold E, Bayless D, Reza MT (2019) Algal remediation of wastewater produced from hydrothermally treated septage. Sustainability 11(12):3454. https://doi.org/10.3390/su11123454

    CAS  Article  Google Scholar 

  47. Tarhan SZ, Koçer AT, Özçimen D, Gökalp İ (2021) Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. J Water Process Eng 40:101783. https://doi.org/10.1016/j.jwpe.2020.101783

    Article  Google Scholar 

  48. Barreiro DL, Bauer M, Hornung U, Posten C, Kruse A, Prins W (2015) Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal Res 9:99–106. https://doi.org/10.1016/j.algal.2015.03.007

    Article  Google Scholar 

  49. Yang L, Si B, Tan X, Chu H, Zhou X, Zhang Y, Zhang Y, Zhao F (2018) Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresour Technol 266:349–356. https://doi.org/10.1016/j.biortech.2018.06.083

    CAS  Article  PubMed  Google Scholar 

  50. Chen PH, Jimenez JLV, Rowland SM, Quinn JC, Laurens LM (2020) Nutrient recycle from algae hydrothermal liquefaction aqueous phase through a novel selective remediation approach. Algal Res 46:101776. https://doi.org/10.1016/j.algal.2019.101776

    Article  Google Scholar 

  51. Satinover SJ, Mandal S, Connatser RM, Lewis SA, Rodriguez M, Mathews TJ, Billing J, Borole AP (2021) Green hydrogen from microalgal liquefaction byproducts with ammonia recovery and effluent recycle for developing circular processes. J Clean Prod 299:126834. https://doi.org/10.1016/j.jclepro.2021.126834

    CAS  Article  Google Scholar 

  52. Kumar V, Jaiswal KK, Vlaskin MS, Nanda M, Tripathi MK, Gururani P, Kumar S, Joshi HC (2021) Hydrothermal liquefaction of municipal wastewater sludge and nutrient recovery from the aqueous phase. Biofuels:1–6. https://doi.org/10.1080/17597269.2020.1863627

  53. Kumar V, Kumar S, Chauhan PK, Verma M, Bahuguna V, Joshi HC, Ahmad W, Negi P, Sharma N, Ramola B, Rautela I, Nanda M, Vlaskin MS (2019) Low-temperature catalyst based hydrothermal liquefaction of harmful macroalgal blooms, and aqueous phase nutrient recycling by microalgae. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-47664-w

  54. Ahirwar A, Meignen G, Khan MJ, Khan N, Rai A, Schoefs B, Marchand J, Varjani S, Vinayak V (2021) Nanotechnological approaches to disrupt the rigid cell walled microalgae grown in wastewater for value-added biocompounds: commercial applications, challenges, and breakthrough. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-021-01965-1

  55. Dang B-T, Bui X-T, Tran DP, Ngo HH, Nghiem LD, Hoang T-K-D, Nguyen P-T, Nguyen HH, Vo T-K-Q, Lin C, Lin KYA, Varjani S (2022) Current application of algae derivatives for bioplastic production: A review. Bioresour Technol 347:126698. https://doi.org/10.1016/j.biortech.2022.126698

    CAS  Article  PubMed  Google Scholar 

  56. Mohanty A, Mankoti M, Rout PR, Meena SS, Dewan S, Kalia B, Varjani S, Wong JW, Banu JR (2022) Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int J Food Microbiol 365:109538. https://doi.org/10.1016/j.ijfoodmicro.2022.109538

    Article  PubMed  Google Scholar 

  57. Yen H-W, Chen P-W, Chen L-J (2015) The synergistic effects for the co-cultivation of oleaginous yeast- Rhodotorula glutinis and microalgae- Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152. https://doi.org/10.1016/j.biortech.2014.09.113

    CAS  Article  PubMed  Google Scholar 

  58. Cai S, Hu C, Du S (2007) Comparisons of growth and biochemical composition between mixed culture of alga and yeast and monocultures. J Biosci Bioeng 104(5):391–397. https://doi.org/10.1263/jbb.104.391

    CAS  Article  PubMed  Google Scholar 

  59. Kitcha S, Cheirsilp B (2014) Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl Biochem Biotechnol 173(2):522–534. https://doi.org/10.1007/s12010-014-0859-5

    CAS  Article  PubMed  Google Scholar 

  60. Gai C, Zhang Y, Chen W-T, Zhou Y, Schideman L, Zhang P, Tommaso G, Kuo C-T, Dong Y (2015) Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa. Bioresour Technol 184:328–335. https://doi.org/10.1016/j.biortech.2014.10.118

    CAS  Article  PubMed  Google Scholar 

  61. Panisko E, Wietsma T, Lemmon T, Albrecht K, Howe D (2015) Characterization of the aqueous fractions from hydrotreatment and hydrothermal liquefaction of lignocellulosic feedstocks. Biomass Bioenergy 74:162–171. https://doi.org/10.1016/j.biombioe.2015.01.011

    CAS  Article  Google Scholar 

  62. Varjani S, Pandey A, Upasani VN (2020) Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium – a microcosm approach. Sci Total Environ 745:141043. https://doi.org/10.1016/j.scitotenv.2020.141043

    CAS  Article  PubMed  Google Scholar 

  63. Varjani S, Upasani VN, Pandey A (2020) Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ 737:139766. https://doi.org/10.1016/j.scitotenv.2020.139766

    CAS  Article  PubMed  Google Scholar 

  64. Varjani S, Upasani VN (2021) Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 – a novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresour Technol 319:124240. https://doi.org/10.1016/j.biortech.2020.124240

    CAS  Article  PubMed  Google Scholar 

  65. Zheng M, Schideman LC, Tommaso G, Chen W-T, Zhou Y, Nair K, Qian W, Zhang Y, Wang K (2017) Anaerobic digestion of wastewater generated from the hydrothermal liquefaction of Spirulina: Toxicity assessment and minimization. Energy Convers Manag 141:420–428. https://doi.org/10.1016/j.enconman.2016.10.034

    CAS  Article  Google Scholar 

  66. Biller P, Ross A, Skill S, Lea-Langton A, Balasundaram B, Hall C, Riley R, Llewellyn C (2012) Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. Algal Res 1(1):70–76. https://doi.org/10.1016/j.algal.2012.02.002

    CAS  Article  Google Scholar 

  67. Godwin CM, Hietala DC, Lashaway AR, Narwani A, Savage PE, Cardinale BJ (2017) Algal polycultures enhance coproduct recycling from hydrothermal liquefaction. Bioresour Technol 224:630–638. https://doi.org/10.1016/j.biortech.2016.11.105

    CAS  Article  PubMed  Google Scholar 

  68. Leng L, Zhang W, Leng S, Chen J, Yang L, Li H, Jiang S, Huang H (2020) Bioenergy recovery from wastewater produced by hydrothermal processing biomass: Progress, challenges, and opportunities. Sci Total Environ 748:142383. https://doi.org/10.1016/j.scitotenv.2020.142383

    CAS  Article  PubMed  Google Scholar 

  69. Mourya M, Khan MJ, Ahirwar A, Schoefs B, Marchand J, Rai A, Varjani S, Rajendran K, Banu JR, Vinayak V (2022) Latest trends and developments in microalgae as potential source for biofuels: The case of diatoms. Fuel 314:122738. https://doi.org/10.1016/j.fuel.2021.122738

    CAS  Article  Google Scholar 

  70. Devda V, Chaudhary K, Varjani S, Pathak B, Patel AK, Singhania RR, Taherzadeh MJ, Ngo HH, Wong JWC, Guo W, Chaturvedi P (2021) Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered 12(1):4697–4718. https://doi.org/10.1080/21655979.2021.1946631

    Article  PubMed  PubMed Central  Google Scholar 

  71. Alba LG, Torri C, Fabbri D, Kersten SR, Brilman DWW (2013) Microalgae growth on the aqueous phase from hydrothermal liquefaction of the same microalgae. Chem Eng J 228:214–223. https://doi.org/10.1016/j.cej.2013.04.097

    CAS  Article  Google Scholar 

  72. Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6):3639–3646. https://doi.org/10.1021/ef100203u

    CAS  Article  Google Scholar 

  73. Biller P, Ross A (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102(1):215–225. https://doi.org/10.1016/j.biortech.2010.06.028

    CAS  Article  PubMed  Google Scholar 

  74. Duan P, Savage PE (2010) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50(1):52–61. https://doi.org/10.1021/ie100758s

    CAS  Article  Google Scholar 

  75. Yu G, Zhang Y, Schideman L, Funk T, Wang Z (2011) Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy Environ. Sci. 4(11):4587–4595

    CAS  Article  Google Scholar 

  76. Sharma P, Gujjala LKS, Varjani S, Kumar S (2022) Emerging microalgae-based technologies in biorefinery and risk assessment issues: Bioeconomy for sustainable development. Sci Total Environ 813:152417. https://doi.org/10.1016/j.scitotenv.2021.152417

    CAS  Article  PubMed  Google Scholar 

  77. Gaur VK, Gautam K, Sharma P, Gupta S, Pandey A, You S, Varjani S (2022) Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. Environ Res 209:112793. https://doi.org/10.1016/j.envres.2022.112793

    CAS  Article  PubMed  Google Scholar 

  78. Valdez PJ, Savage PE (2013) A reaction network for the hydrothermal liquefaction of Nannochloropsis sp. Algal Res 2(4):416–425. https://doi.org/10.1016/j.algal.2013.08.002

    Article  Google Scholar 

  79. Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV, Zacher AH, Albrecht KO, Hallen RT, Holladay JE (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2(4):445–454. https://doi.org/10.1016/j.algal.2013.08.005

    Article  Google Scholar 

  80. Deng L, Ngo HH, Guo W, Chang SW, Nguyen DD, Pandey A, Varjani S, Hoang NB (2022) Recent advances in circular bioeconomy based clean technologies for sustainable environment. J Water Process Eng 46:102534. https://doi.org/10.1016/j.jwpe.2021.102534

    Article  Google Scholar 

  81. Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res 45(1):11–36. https://doi.org/10.1016/j.watres.2010.08.037

    CAS  Article  PubMed  Google Scholar 

  82. Jena U, Vaidyanathan N, Chinnasamy S, Das K (2011) Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresour Technol 102(3):3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111

    CAS  Article  PubMed  Google Scholar 

  83. Hognon C, Delrue F, Texier J, Grateau M, Thiery S, Miller H, Roubaud A (2015) Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. growth studies on the recovered hydrothermal aqueous phase. Biomass Bioenergy 73:23–31. https://doi.org/10.1016/j.biombioe.2014.11.025

    CAS  Article  Google Scholar 

  84. Chen L, Zhu T, Fernandez JSM, Chen S, Li D (2017) Recycling nutrients from a sequential hydrothermal liquefaction process for microalgae culture. Algal Res 27:311–317. https://doi.org/10.1016/j.algal.2017.09.023

    Article  Google Scholar 

  85. Selvaratnam T, Reddy H, Muppaneni T, Holguin F, Nirmalakhandan N, Lammers PJ, Deng S (2015) Optimizing energy yields from nutrient recycling using sequential hydrothermal liquefaction with Galdieria sulphuraria. Algal Res 12:74–79. https://doi.org/10.1016/j.algal.2015.07.007

    Article  Google Scholar 

  86. Barreiro DL, Gómez BR, Hornung U, Kruse A, Prins W (2015) Hydrothermal liquefaction of microalgae in a continuous stirred-tank reactor. Energy Fuels 29(10):6422–6432. https://doi.org/10.1021/acs.energyfuels.5b02099

    CAS  Article  Google Scholar 

  87. Talbot C, Garcia-Moscoso J, Drake H, Stuart BJ, Kumar S (2016) Cultivation of microalgae using flash hydrolysis nutrient recycle. Algal Res 18:191–197. https://doi.org/10.1016/j.algal.2016.06.021

    Article  Google Scholar 

  88. Rout PR, Dash RR, Bhunia P, Lee E, Bae J (2021) Comparison between a single unit bioreactor and an integrated bioreactor for nutrient removal from domestic wastewater. Sustain Energy Technol Assess 48:101620. https://doi.org/10.1016/j.seta.2021.101620

    Article  Google Scholar 

  89. Meiser A, Schmid-Staiger U, Trösch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16(3):215–225. https://doi.org/10.1023/b:japh.0000048507.95878.b5

    CAS  Article  Google Scholar 

  90. Lee E, Rout PR, Bae J (2021) The applicability of anaerobically treated domestic wastewater as a nutrient medium in hydroponic lettuce cultivation: Nitrogen toxicity and health risk assessment. Sci Total Environ 780:146482. https://doi.org/10.1016/j.scitotenv.2021.146482

    CAS  Article  PubMed  Google Scholar 

  91. Patel GB, Shah KR, Shindhal T, Rakholiya P, Varjani S (2021) Process parameter studies by central composite design of response surface methodology for lipase activity of newly obtained actinomycete. Environ Technol Innov 23:101724. https://doi.org/10.1016/j.eti.2021.101724

    CAS  Article  Google Scholar 

  92. Zhang L, Lu H, Zhang Y, Li B, Liu Z, Duan N, Liu M (2015) Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. J Appl Phycol 28(2):1031–1039. https://doi.org/10.1007/s10811-015-0640-3

    CAS  Article  Google Scholar 

  93. Bagnoud-Velásquez M, Schmid-Staiger U, Peng G, Vogel F, Ludwig C (2015) First developments towards closing the nutrient cycle in a biofuel production process. Algal Res 8:76–82. https://doi.org/10.1016/j.algal.2014.12.012

    Article  Google Scholar 

  94. Gurunathan RJ, Varjani BKS, Ngo HH, Gnansounou E (2022) Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. Environ. Res. 203:111815. https://doi.org/10.1016/j.envres.2021.111815

    CAS  Article  PubMed  Google Scholar 

  95. Aruoja V, Sihtmäe M, Dubourguier H-C, Kahru A (2011) Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: Comparison with published data and QSARs. Chemosphere 84(10):1310–1320. https://doi.org/10.1016/j.chemosphere.2011.05.023

    CAS  Article  PubMed  Google Scholar 

  96. Nakai S (2001) Algal growth inhibition effects and inducement modes by plant-producing phenols. Water Res 35(7):1855–1859. https://doi.org/10.1016/s0043-1354(00)00444-9

    CAS  Article  PubMed  Google Scholar 

  97. Tsukahara K, Kimura T, Minowa T, Sawayama S, Yagishita T, Inoue S, Hanaoka T, Usui Y, Ogi T (2001) Microalgal cultivation in a solution recovered from the low-temperature catalytic gasification of the microalga. J Biosci Bioeng 91(3):311–313. https://doi.org/10.1016/s1389-1723(01)80140-7

    CAS  Article  PubMed  Google Scholar 

  98. Deleebeeck NM, Laender FD, Chepurnov VA, Vyverman W, Janssen CR, Schamphelaere KAD (2009) A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water Res 43(7):1935–1947. https://doi.org/10.1016/j.watres.2009.01.019

    CAS  Article  PubMed  Google Scholar 

  99. Huang HJ, Yuan XZ (2016) The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour Technol 200:991–998. https://doi.org/10.1016/j.biortech.2015.10.099

    CAS  Article  PubMed  Google Scholar 

  100. Bagnoud-Velásquez M, Brandenberger M, Vogel F, Ludwig C (2014) Continuous catalytic hydrothermal gasification of algal biomass and case study on toxicity of aluminum as a step toward effluents recycling. Catal Today 223:35–43. https://doi.org/10.1016/j.cattod.2013.12.001

    CAS  Article  Google Scholar 

  101. Madsen RB, Biller P, Jensen MM, Becker J, Iversen BB, Glasius M (2016) Predicting the chemical composition of aqueous phase from hydrothermal liquefaction of model compounds and biomasses. Energy Fuels 30(12):10470–10483. https://doi.org/10.1021/acs.energyfuels.6b02007

    CAS  Article  Google Scholar 

  102. Leng L, Yuan X, Huang H, Jiang H, Chen X, Zeng G (2014) The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour Technol 167:144–150. https://doi.org/10.1016/j.biortech.2014.05.119

    CAS  Article  PubMed  Google Scholar 

  103. Yuan X, Leng L, Huang H, Chen X, Wang H, Xiao Z, Zhai Y, Chen H, Zeng G (2015) Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 120:645–652. https://doi.org/10.1016/j.chemosphere.2014.10.010

    CAS  Article  PubMed  Google Scholar 

  104. Patel B, Guo M, Chong C, Sarudin SHM, Hellgardt K (2016) Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase. Sci Total Environ 568:489–497. https://doi.org/10.1016/j.scitotenv.2016.06.041

    CAS  Article  PubMed  Google Scholar 

  105. Shanmugam SR, Adhikari S, Shakya R (2017) Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae. Bioresour Technol 230:43–48. https://doi.org/10.1016/j.biortech.2017.01.031

    CAS  Article  PubMed  Google Scholar 

  106. Liang Y, Zhao X, Chi Z, Rover M, Johnston P, Brown R, Jarboe L, Wen Z (2013) Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: Reducing bio-oil toxicity and enhancing algal toxicity tolerance. Bioresour Technol 133:500–506. https://doi.org/10.1016/j.biortech.2013.01.134

    CAS  Article  PubMed  Google Scholar 

  107. Chen K, Lyu H, Hao S, Luo G, Zhang S, Chen J (2015) Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Bioresour Technol 182:160–168. https://doi.org/10.1016/j.biortech.2015.01.124

    CAS  Article  PubMed  Google Scholar 

  108. Zhou W, Wang J, Chen P, Ji C, Kang Q, Lu B, Li K, Liu J, Ruan R (2017) Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew Sust Energ Rev 76:1163–1175. https://doi.org/10.1016/j.rser.2017.03.065

    CAS  Article  Google Scholar 

  109. Paskuliakova A, Tonry S, Touzet N (2016) Microalgae isolation and selection for the treatment of landfill leachate. WIT Trans Ecol Environ. https://doi.org/10.2495/wp160071

  110. Chen Z, Xiao Y, Liu T, Yuan M, Liu G, Fang J, Yang B (2021) Exploration of microalgal species for nutrient removal from anaerobically digested swine wastewater and potential lipids production. Microorganisms 9(12):2469. https://doi.org/10.3390/microorganisms9122469

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Rani S, Gunjyal N, Ojha CSP, Singh RP (2021) Review of challenges for algae-based wastewater treatment: Strain selection, wastewater characteristics, abiotic, and biotic factors. J Hazard Toxic Radioact Waste 25(2):03120004. https://doi.org/10.1061/(asce)hz.2153-5515.0000578

    CAS  Article  Google Scholar 

  112. Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V (2021) Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 12(2):9531–9549. https://doi.org/10.1080/21655979.2021.1996748

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Sharma J, Kumar V, Kumar SS, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Microalgal consortia for municipal wastewater treatment – lipid augmentation and fatty acid profiling for biodiesel production. J Photochem Photobiol B: Biol 202:111638. https://doi.org/10.1016/j.jphotobiol.2019.111638

    CAS  Article  Google Scholar 

  114. A. Fallahi, N. Hajinajaf, O. Tavakoli, M.-H. Sarrafzadeh (2020) Cultivation of mixed microalgae using municipal wastewater: Biomass productivity, nutrient removal, and biochemical content. Iran J Biotechnol 18(4). https://doi.org/10.30498/IJB.2020.2586

  115. Hena S, Fatimah S, Tabassum S (2015) Cultivation of algae consortium in a dairy farm wastewater for biodiesel production. Water Resour Ind 10:1–14. https://doi.org/10.1016/j.wri.2015.02.002

    Article  Google Scholar 

  116. Mahapatra DM, Chanakya H, Ramachandra T (2014) Bioremediation and lipid synthesis through mixotrophic algal consortia in municipal wastewater. Bioresour Technol 168:142–150. https://doi.org/10.1016/j.biortech.2014.03.130

    CAS  Article  PubMed  Google Scholar 

  117. Zhou Y, Schideman L, Zhang Y, Yu G (2011) Environment-enhancing energy: A novel wastewater treatment system that maximizes algal biofuel production and minimizes greenhouse gas emissions. Proceedings of the Water Environment Federation 2011(7):7268–7282. https://doi.org/10.2175/193864711802793579

    Article  Google Scholar 

  118. Wang S, Shi X, Palenik B (2016) Characterization of Picochlorum sp. use of wastewater generated from hydrothermal liquefaction as a nitrogen source. Algal Res 13:311–317. https://doi.org/10.1016/j.algal.2015.11.015

    Article  Google Scholar 

  119. Wang Y, Ho S-H, Cheng C-L, Guo W-Q, Nagarajan D, Ren N-Q, Lee D-J, Chang J-S (2016) Perspectives on the feasibility of using microalgae for industrial wastewater treatment. Bioresour Technol 222:485–497. https://doi.org/10.1016/j.biortech.2016.09.106

    CAS  Article  PubMed  Google Scholar 

  120. Watson J, Zhang Y, Si B, Chen W-T, de Souza R (2018) Gasification of biowaste: A critical review and outlooks. Renew Sust Energ Rev 83:1–17. https://doi.org/10.1016/j.rser.2017.10.003

    CAS  Article  Google Scholar 

  121. Khan MJ, Gordon R, Varjani S, Vinayak V (2022) Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. Sci Total Environ 823:153667. https://doi.org/10.1016/j.scitotenv.2022.153667

    CAS  Article  PubMed  Google Scholar 

  122. Cheng J, Xu J, Huang Y, Li Y, Zhou J, Cen K (2015) Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure. Bioresour Technol 177:240–246. https://doi.org/10.1016/j.biortech.2014.11.099

    CAS  Article  PubMed  Google Scholar 

  123. Collet P, Hélias A, Lardon L, Ras M, Goy R-A, Steyer J-P (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214. https://doi.org/10.1016/j.biortech.2010.06.154

    CAS  Article  PubMed  Google Scholar 

  124. Xu J, Zhao Y, Zhao G, Zhang H (2015) Nutrient removal and biogas upgrading by integrating freshwater algae cultivation with piggery anaerobic digestate liquid treatment. Appl Microbiol Biotechnol 99(15):6493–6501. https://doi.org/10.1007/s00253-015-6537-x

    CAS  Article  PubMed  Google Scholar 

  125. Fei Q, Fu R, Shang L, Brigham CJ, Chang HN (2014) Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst Eng 38(4):691–700. https://doi.org/10.1007/s00449-014-1308-0

    CAS  Article  PubMed  Google Scholar 

  126. Li Z, Haifeng L, Zhang Y, Shanshan M, Baoming L, Zhidan L, Na D, Minsheng L, Buchun S, Jianwen L (2017) Effects of strain, nutrients concentration and inoculum size on microalgae culture for bioenergy from post hydrothermal liquefaction wastewater. Int J Agric Biol Eng 10(2):194–204

    Google Scholar 

  127. Miazek K, Kratky L, Sulc R, Jirout T, Aguedo M, Richel A, Goffin D (2017) Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review. Int J Mol Sci 18(7):1429. https://doi.org/10.3390/ijms18071429

    CAS  Article  PubMed Central  Google Scholar 

  128. Ma J, Wang P, Chen J, Sun Y, Che J (2007) Differential response of green algal species Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa to six pesticides. Pol J Environ Stud 16(6)

  129. Nguyen TKL, Ngo HH, Guo W, Nguyen TLH, Chang SW, Nguyen DD, Varjani S, Lei Z, Deng L (2021) Environmental impacts and greenhouse gas emissions assessment for energy recovery and material recycle of the wastewater treatment plant. Sci Total Environ 784:147135. https://doi.org/10.1016/j.scitotenv.2021.147135

    CAS  Article  PubMed  Google Scholar 

  130. Zhen G, Lu X, Kumar G, Bakonyi P, Xu K, Zhao Y (2017) Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives. Prog Energy Combust Sci 63:119–145. https://doi.org/10.1016/j.pecs.2017.07.003

    Article  Google Scholar 

  131. Cheng D, Ngo HH, Guo W, Lee D, Nghiem DL, Zhang J, Liang S, Varjani S, Wang J (2020) Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics. Bioresour Technol 311:123588. https://doi.org/10.1016/j.biortech.2020.123588

    CAS  Article  PubMed  Google Scholar 

  132. Rout PR, Bhunia P, Lee E, Bae J (2020) Microbial electrochemical systems (MESs): Promising alternatives for energy sustainability. Handb Environ Chem:223–251. https://doi.org/10.1007/698_2020_614

  133. Sasaki K, Morita M, Sasaki D, Hirano HI, Matsumoto N, Watanabe A, Ohmura N, Igarashi Y (2011) A bioelectrochemical reactor containing carbon fiber textiles enables efficient methane fermentation from garbage slurry. Bioresour Technol 102(13):6837–6842. https://doi.org/10.1016/j.biortech.2011.04.022

    CAS  Article  PubMed  Google Scholar 

  134. Koch C, Kuchenbuch A, Kretzschmar J, Wedwitschka H, Liebetrau J, Müller S, Harnisch F (2015) Coupling electric energy and biogas production in anaerobic digesters – impacts on the microbiome. RSC Advances 5(40):31329–31340. https://doi.org/10.1039/c5ra03496e

    CAS  Article  Google Scholar 

  135. Samani S, Abdoli MA, Karbassi A, Amin MM (2016) Stimulation of the hydrolytic stage for biogas production from cattle manure in an electrochemical bioreactor. Water Sci Technol 74(3):606–615. https://doi.org/10.2166/wst.2016.243

    CAS  Article  PubMed  Google Scholar 

  136. Sun R, Zhou A, Jia J, Liang Q, Liu Q, Xing D, Ren N (2015) Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells. Bioresour Technol 175:68–74. https://doi.org/10.1016/j.biortech.2014.10.052

    CAS  Article  PubMed  Google Scholar 

  137. Feng Q, Song Y-C, Bae B-U (2016) Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour Technol 220:500–508. https://doi.org/10.1016/j.biortech.2016.08.085

    CAS  Article  PubMed  Google Scholar 

  138. Marone A, Carmona-Martínez A, Sire Y, Meudec E, Steyer J, Bernet N, Trably E (2016) Bioelectrochemical treatment of table olive brine processing wastewater for biogas production and phenolic compounds removal. Water Res 100:316–325. https://doi.org/10.1016/j.watres.2016.05.008

    CAS  Article  PubMed  Google Scholar 

  139. Kondaveeti S, Min B (2015) Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. Water Res 87:137–144. https://doi.org/10.1016/j.watres.2015.09.011

    CAS  Article  PubMed  Google Scholar 

  140. Rashid N, Cui Y-F, Rehman MSU, Han J-I (2013) Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. Sci Total Environ 456–457:91–94. https://doi.org/10.1016/j.scitotenv.2013.03.067

    CAS  Article  PubMed  Google Scholar 

  141. Ramanathan G, Birthous RS, Abirami D, Highcourt D et al (2011) Efficacy of marine microalgae as exoelectrogen in microbial fuel cell system for bioelectricity generation. World J Fish Mar Sci 3(1):79–87

    Google Scholar 

  142. Do MH, Ngo HH, Guo W, Chang SW, Nguyen DD, Pandey A, Sharma P, Varjani S, Nguyen TAH, Hoang NB (2022) A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater. Sci Total Environ 811:152261. https://doi.org/10.1016/j.scitotenv.2021.152261

    CAS  Article  PubMed  Google Scholar 

  143. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629–3637. https://doi.org/10.1021/es100125h

    CAS  Article  PubMed  Google Scholar 

  144. Xiao L, He Z (2014) Applications and perspectives of phototrophic microorganisms for electricity generation from organic compounds in microbial fuel cells. Renew Sust Energ Rev 37:550–559. https://doi.org/10.1016/j.rser.2014.05.066

    CAS  Article  Google Scholar 

  145. Cherad R, Onwudili J, Biller P, Williams P, Ross A (2016) Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. Fuel 166:24–28. https://doi.org/10.1016/j.fuel.2015.10.088

    CAS  Article  Google Scholar 

  146. Guo B, Yang B, Weil P, Zhang S, Hornung U, Dahmen N (2022) The effect of dichloromethane on product separation during continuous hydrothermal liquefaction of Chlorella vulgaris and aqueous product recycling for algae cultivation. Energy Fuels 36(2):922–931. https://doi.org/10.1021/acs.energyfuels.1c02523

    CAS  Article  Google Scholar 

  147. Li Y, Tarpeh WA, Nelson KL, Strathmann TJ (2018) Quantitative evaluation of an integrated system for valorization of wastewater algae as bio-oil, fuel gas, and fertilizer products. Environ Sci Technol 52(21):12717–12727. https://doi.org/10.1021/acs.est.8b04035

    CAS  Article  PubMed  Google Scholar 

  148. Shan Y-Q, Yin L-X, Djandja OS, Wang Z-C, Duan P-G (2021) Supercritical water gasification of waste water produced from hydrothermal liquefaction of microalgae over ru catalyst for production of h2 rich gas fuel. Fuel 292:120288. https://doi.org/10.1016/j.fuel.2021.120288

    CAS  Article  Google Scholar 

  149. Nurcahyani PR, Matsumura Y (2021) Reutilization of algal supercritical water gasification waste for microalgae Chlorella vulgaris cultivation. ACS Omega 6(19):12551–12556. https://doi.org/10.1021/acsomega.1c00476

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Fernandez S, Srinivas K, Schmidt AJ, Swita MS, Ahring BK (2018) Anaerobic digestion of organic fraction from hydrothermal liquefied algae wastewater byproduct. Bioresour Technol 247:250–258. https://doi.org/10.1016/j.biortech.2017.09.030

    CAS  Article  PubMed  Google Scholar 

  151. Shanmugam SR, Adhikari S, Nam H, Sajib SK (2018) Effect of bio-char on methane generation from glucose and aqueous phase of algae liquefaction using mixed anaerobic cultures. Biomass Bioenergy 108:479–486. https://doi.org/10.1016/j.biombioe.2017.10.034

    CAS  Article  Google Scholar 

  152. Li R, Liu D, Zhang Y, Zhou J, Tsang YF, Liu Z, Duan N, Zhang Y (2019) Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. Sci Total Environ 651:61–69. https://doi.org/10.1016/j.scitotenv.2018.09.175

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Thapar Institute of Engineering and Technology (TIET) and Sheffield Hallam University for supporting this work.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

PRR: Conceptualization, writing-original draft preparation. MG: Conceptualization, supervision, writing-original draft preparation. AM: Writing original draft preparation. DSP: Writing-reviewing and editing. NH: Writing-reviewing and editing. SM: Writing-reviewing and editing. SKB: Writing-reviewing and editing. NKS: Writing-reviewing and editing. SV: Conceptualization, supervision, final approval of the version to be submitted.

Corresponding author

Correspondence to Sunita Varjani.

Ethics declarations

Conflicts of interest

No conflict of interest had influenced either the conduct or the presentation of the research to the authors.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rout, P.R., Goel, M., Mohanty, A. et al. Recent Advancements in Microalgal Mediated Valorisation of Wastewater from Hydrothermal Liquefaction of Biomass. Bioenerg. Res. (2022). https://doi.org/10.1007/s12155-022-10421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-022-10421-5

Keywords

  • Hydrothermal liquefaction
  • Wastewater from HTL (HTWW)
  • Bioenergy
  • Microalgae
  • Valorisation