Skip to main content
Log in

High-Throughput Carbon-Capturing Frameworks by Pelleting Hydrochar of Food Waste and its Residual Ash as a Dopant

BioEnergy Research Aims and scope Submit manuscript

Cite this article


Studies on converting biomass into an adsorbent often are available from the contemporary academic literature. However, no in-depth systematic investigation exists on the possibility of strategically recycling food waste and the residual ash of its hydrothermal carbonization (HTC) into pellets for the purpose of physical sorption. Therefore, the objective of this study was to transform hydrochar of food waste and its residual ash into high-throughput carbon-capturing frameworks via an integrative HTC-pelletization approach. The pilot-scale manufacturing of adsorbents consisted of carbonizing food waste at 200.00 °C and 1.50 MPa for 2.00 h then pressing its powdery hydrochar, residual ash and spent peanut grain (SPG) together on an automatic pelletizer machine at 75.00-100.00 MPa and 150.00 °C for 90.00 s. The addition of ash as an inorganic dopant structured-up functional gas-binding alkaline sites, such as N, S, SiO2, and Al2O3, onto the surface of pellets. Hence, it enabled them to effectively encapsulate 8.90 mmol CO2 g−1. Co-addition of SPG slightly limited the physisorption to 7.50 mmol CO2 g−1. However, the organic binder, by its powerful stickness, proved useful to enhance the regenerability (>99.00%) of the material over multiple cycles of swinging CO2 to N2 to simulate adsorption and desorption, respectively. Therefore, insights into ramifications of the integrative HTC-pelletization approach are timely. They can provide forward knowledge of relevance to progress in the field’s prominence in elaborating high-throughput physisorption via carbon-to-waste pathways. However, further research is necessary to analyze whether it is feasible or not to bring carbon-capturing pellets into implementation at industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



carbon capture and storage


carbon capture and utilization

Dp :

diameter of pore [nm]


energy dispersive x-ray


greenhouse gas


hydrothermal carbonization

Hyg :

hygroscopicity [%]


municipal solid waste


pseudo first-order


pseudo second-order

SA :

surface area [m2 g−1]


spent peanut grain

Vp :

volume of pore [m3 g−1]

Wp :

width of pore [nm]






  1. Xiong X, Yu IKM, Tsang DCW et al (2019) Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects. Chem Eng J 375:121983.

    Article  CAS  Google Scholar 

  2. Zhang B, Heidari M, Regmi B et al (2018) Hydrothermal carbonization of fruit wastes: a promising technique for generating hydrochar. Energies 11:2022.

    Article  CAS  Google Scholar 

  3. Yu IKM, Tsang DCW, Yip ACK et al (2017) Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis. Chemosphere 184:1099–1107.

    Article  CAS  PubMed  Google Scholar 

  4. Igalavithana AD, Mandal S, Niazi NK et al (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47:2275–2330.

    Article  CAS  Google Scholar 

  5. Zhang Y, Wibowo H, Zhong L et al (2021) Cu-BTC-based composite adsorbents for selective adsorption of CO2 from syngas. Sep Purif 279:119644.

    Article  CAS  Google Scholar 

  6. Fabbri D, Torri C (2016) Linking pyrolysis and anaerobic digestion (Py-AD) for the conversion of lignocellulosic biomass. Curr Opin Biotechnol 38:167–173.

    Article  CAS  PubMed  Google Scholar 

  7. Benavente V, Calabuig E, Fullana A (2015) Upgrading of moist agro-industrial wastes by hydrothermal carbonization. J Anal Appl Pyrolysis 113:89–98.

    Article  CAS  Google Scholar 

  8. Murphy JD, Power N (2007) A technical, economic, and environmental analysis of energy production from newspaper in Ireland. Waste Manag 27:177–192.

    Article  CAS  PubMed  Google Scholar 

  9. Khan N, Mohan S, Dinesha P (2021) Regimes of hydrochar yield from hydrothermal degradation of various lignocellulosic biomass: a review. J Clean Prod 288:125629.

    Article  CAS  Google Scholar 

  10. Nzediegwu C, Naeth MA, Chang SX (2021) Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Bioresour Technol 330:124976.

    Article  CAS  PubMed  Google Scholar 

  11. Aragón-Briceño CI, Grasham O, Ross AB et al (2020) Hydrothermal carbonization of sewage digestate at wastewater treatment works: influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew Energ 157:959–973.

    Article  CAS  Google Scholar 

  12. Balcik-Canbolat C, Ozbey B, Dizge N, Keskinler B (2017) Pyrolysis of commingled waste textile fibers in a batch reactor: analysis of the pyrolysis gases and solid product. Int J Green Energy 14:289–294.

    Article  CAS  Google Scholar 

  13. Igalavithana AD, Choi SW, Dissanayake PD et al (2020) Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. J Hazard Mater 391:121147.

    Article  CAS  PubMed  Google Scholar 

  14. Sun Y, Liu C, Zan Y et al (2018) Hydrothermal carbonization of microalgae (Chlorococcum sp.) for porous carbons with high Cr (VI) adsorption performance. Appl Biochem Biotechnol 186:414–424.

    Article  CAS  PubMed  Google Scholar 

  15. Sun Y, Zhang JP, Guo F, Zhang L (2016) Hydrochar preparation from black liquor by CO2 assisted hydrothermal treatment: optimization of its performance for Pb2+ removal. Korean J Chem Eng 33:2703–2710.

    Article  CAS  Google Scholar 

  16. Yang Y, Sun C, Huang Q, Yan J (2021) Hierarchical porous structure formation mechanism in food waste component derived N-doped biochar: application in VOCs removal. Chemosphere 132702.

  17. Liu Y, Sun Y, Wan Z et al (2021) Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant. J Clean Prod 310:127482.

    Article  CAS  Google Scholar 

  18. Inbaraj BS, Sridhar K, Chen B-H (2021) Removal of polycyclic aromatic hydrocarbons from water by magnetic activated carbon nanocomposite from green tea waste. J Hazard Mater 415:125701.

    Article  CAS  PubMed  Google Scholar 

  19. Maneerung T, Liew J, Dai Y et al (2016) Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresour Technol 200:350–359.

    Article  CAS  PubMed  Google Scholar 

  20. Ruan X, Liu Y, Wang G et al (2018) Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin. Bioresour Technol 270:223–229.

    Article  CAS  PubMed  Google Scholar 

  21. Wilk M, Magdziarz A, Jayaraman K et al (2019) Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A Comparative Study Biomass Bioenergy 120:166–175.

    Article  CAS  Google Scholar 

  22. Kumar A, Jena HM (2016) Preparation and characterization of high surface area activated carbon from fox nut (Euryale ferox) shell by chemical activation with H3PO4. Results Phys 6:651–658.

    Article  Google Scholar 

  23. Tran HN, Chao H-P, You S-J (2018) Activated carbons from golden shower upon different chemical activation methods: synthesis and characterizations. Adsorp Sci Technol 36:95–113.

    Article  CAS  Google Scholar 

  24. Karimi M, Diaz de Tuesta JL, d. P. Gonçalves CN et al (2020) Compost from municipal solid wastes as a source of biochar for CO2 capture. Chem Eng Technol 43:1336–1349.

  25. Xie X-Y, Qian X-Y, Qi S-C et al (2018) Endowing cu-BTC with improved hydrothermal stability and catalytic activity: hybridization with natural clay attapulgite via vapor-induced crystallization. ACS Sustain Chem Eng 6:13217–13225.

    Article  CAS  Google Scholar 

  26. Valle-Zermeño R, Romero-Güiza MS, Chimenos JM et al (2015) Biogas upgrading using MSWI bottom ash: an integrated municipal solid waste management. Renew Energ 80:184–189.

    Article  CAS  Google Scholar 

  27. Smith AM, Singh S, Ross AB (2016) Fate of inorganic material during hydrothermal carbonisation of biomass: influence of feedstock on combustion behaviour of hydrochar. Fuel 169:135–145.

    Article  CAS  Google Scholar 

  28. Bai X, Wang G, Gong C et al (2017) Co-pelletizing characteristics of torrefied wheat straw with peanut shell. Bioresour Technol 233:373–381.

    Article  CAS  PubMed  Google Scholar 

  29. Christoforou E, Fokaides PA (2019) Sustainability considerations of solid biofuels production and exploitation. In: Christoforou E, Fokaides PA (eds) Advances in solid biofuels. Springer International Publishing, Cham, pp 97–109

    Google Scholar 

  30. Sharma HB, Dubey BK (2020) Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Waste Manag 118:521–533.

    Article  CAS  PubMed  Google Scholar 

  31. Gargiulo V, Gomis-Berenguer A, Giudicianni P et al (2018) Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO2 adsorption and separation. Energy Fuel 32:10218–10227.

    Article  CAS  Google Scholar 

  32. Rashidi NA, Yusup S, Hameed BH (2013) Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. Energy 61:440–446.

    Article  CAS  Google Scholar 

  33. Goel C, Kaur H, Bhunia H, Bajpai PK (2016) Carbon dioxide adsorption on nitrogen enriched carbon adsorbents: experimental, kinetics, isothermal and thermodynamic studies. J CO2 Util 16(50–63).

  34. Sigvardsen NM, Ottosen LM (2019) Characterization of coal bio ash from wood pellets and low-alkali coal fly ash and use as partial cement replacement in mortar. Cem Concr Compos 95:25–32.

    Article  CAS  Google Scholar 

  35. Migenda N, Möller R, Schenck W (2021) Adaptive dimensionality reduction for neural network-based online principal component analysis. PLoS One 16:e0248896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. R: The R Project for Statistical Computing. Accessed 27 May 2020

  37. Akbari M, Oyedun AO, Kumar A (2019) Comparative energy and techno-economic analyses of two different configurations for hydrothermal carbonization of yard waste. Bioresour Technol Rep 7:100210.

    Article  Google Scholar 

  38. Alhassan M, Andrew I, Auta M et al (2018) Comparative studies of CO2 capture using acid and base modified activated carbon from sugarcane bagasse. Biofuels 9:719–728.

    Article  CAS  Google Scholar 

  39. Minelli M, Papa E, Medri V et al (2018) Characterization of novel geopolymer – zeolite composites as solid adsorbents for CO2 capture. Chem Eng J 341:505–515.

    Article  CAS  Google Scholar 

  40. Liu S-H, Huang Y-Y (2018) Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J Clean Prod 175:354–360.

    Article  CAS  Google Scholar 

  41. Irani M, Fan M, Ismail H et al (2015) Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption. Nano Energy 11:235–246.

    Article  CAS  Google Scholar 

  42. Vieira RB, Pastore HO (2014) Polyethylenimine-magadiite layered silicate sorbent for CO2 capture. Environ Sci Technol 48:2472–2480.

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Wang X, Song C et al (2013) Sulfuric acid modified bentonite as the support of tetraethylenepentamine for CO2 capture. Energy Fuel 27:1538–1546.

    Article  CAS  Google Scholar 

  44. Yang Y, Liu W, Hu Y et al (2018) One-step synthesis of porous Li4SiO4-based adsorbent pellets via graphite moulding method for cyclic CO2 capture. Chem Eng J 353:92–99.

    Article  CAS  Google Scholar 

  45. Guo T, Ma N, Pan Y et al (2018) Characteristics of CO2 adsorption on biochar derived from biomass pyrolysis in molten salt. Can J Chem Eng 96:2352–2360.

    Article  CAS  Google Scholar 

  46. Khalili S, Khoshandam B, Jahanshahi M (2015) Optimization of production conditions for synthesis of chemically activated carbon produced from pine cone using response surface methodology for CO2 adsorption. RSC Adv 5:94115–94129.

    Article  CAS  Google Scholar 

  47. Seema H, Kemp KC, Le NH et al (2014) Highly selective CO2 capture by S-doped microporous carbon materials. Carbon 66:320–326.

    Article  CAS  Google Scholar 

  48. Geng Z, Xiao Q, Lv H et al (2016) One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture. Sci Rep 6:30049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosiek J (2018) The implementation of circular economy concept in the polish coal combustion products sector – selected problems. Econ Environ Stud 18:353–373.

    Article  Google Scholar 

  50. Kaur B, Gupta RK, Bhunia H (2019) Chemically activated nanoporous carbon adsorbents from waste plastic for CO2 capture: breakthrough adsorption study. Microporous Mesoporous Mater 282:146–158.

    Article  CAS  Google Scholar 

Download references


Th authors would like to acknowledge the Coordination for the Improvement for Higher Education Personnel for scholarship (CAPES, financing code N° 001).

Author information

Authors and Affiliations



Bruno R. A. Moreira, Conceptualization, Data Curation, Methodology, Formal Analysis, Writing – original draft, and Writing – review & editing; Armando L. B. Filho, Investigation and Methodology; Marcelo R. B. Júnior, Investigation and Methodology; Rouverson P. Silva, Supervision and Writing – review & editing.

Corresponding author

Correspondence to Bruno Rafael de Almeida Moreira.

Ethics declarations

Declaration of Competing Interest

The authors declare no potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information


(DOCX 46 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida Moreira, B.R., de Brito Filho, A.L., Barbosa Júnior, M.R. et al. High-Throughput Carbon-Capturing Frameworks by Pelleting Hydrochar of Food Waste and its Residual Ash as a Dopant. Bioenerg. Res. 16, 435–447 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: