Skip to main content
Log in

Chemical and Physical Affinity of Microalga–Azospirillum Consortium Co-cultured in Suspension During CO2 Fixation from Biogas

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

This study evaluated the ability of the bacterium Azospirillum brasilense to establish a synergic association with the microalgae Chlorella sp. and Scenedesmus sp. co-cultured in suspension and supplied with biogas (75% CH4–25% CO2). The results demonstrated that under the stressful composition of biogas, signal molecule production, such as indole-3-acetic acid (IAA) and tryptophan (Trp) production by the bacterium and microalgae, respectively, allowed the maintenance of their affinity and mutualistic association. Chlorella sp. and Scenedesmus sp. co-cultured in suspension with the bacterium showed higher CO2 fixation rates, 0.29 ± 0.05 and 0.31 ± 0.06 g·L−1·day−1, respectively, than cultured alone, 0.17 ± 0.04 and 0.22 ± 0.03 g·L−1·day−1. Similarly, biomass production of Chlorella sp. (1.4 ± 0.4 g·L−1) and Scenedesmus sp. (1.6 ± 0.5 g·L−1) and their cell composition—mainly carbohydrates and proteins—also enhanced in both microalgae interacting with the bacterium. Overall, these results indicate that, co-cultured in suspension, this consortium microalga–A. brasilense did not change its mutualistic interaction during the specific conditions of CO2 capture from biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yong JJY, Chew KW, Khoo KS, Show PL, Chang JS (2021) Prospects and development of algal-bacterial biotechnology in environmental management and protection. Biotechnol Adv 47:107684. https://doi.org/10.1016/j.biotechadv.2020.107684

    Article  CAS  PubMed  Google Scholar 

  2. Rosero-Chasoy G, Rodríguez-Jasso RM, Aguilar CN, Buitrón G, Chairez I, Ruiz HA (2021) Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation – an overview. Bioresour Technol 321:124458. https://doi.org/10.1016/j.biortech.2020.124458

    Article  CAS  PubMed  Google Scholar 

  3. González-González LM, de-Bashan LE (2021) Toward the enhancement of microalgal metabolite production through microalgae–bacteria consortia. Biology 10:282. https://doi.org/10.3390/biology10040282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  5. Zhang B, Li W, Guo Y, Zhang Z, Shi W, Cui F, Lens PNL, Tay JH (2020) Microalgal-bacterial consortia: from interspecies interactions to biotechnological applications. Renew Sustain Energy Rev 118:109563. https://doi.org/10.1016/j.rser.2019.109563

    Article  Google Scholar 

  6. Grossart H (1999) Interactions between marine bacteria and axenic diatoms (Cylindrotheca fusiformis, Nitzschia laevis, and Thalassiosira weissflogii) incubated under various conditions in the lab. Aquat Microb Ecol 19:1–11. https://doi.org/10.3354/ame019001

    Article  Google Scholar 

  7. Ramos-Ibarra JR, Rubio-Ramírez TE, Mondragón-Cortez P, Torres-Velázquez JR, Choix FJ (2019) Azospirillum brasilense-microalga interaction increases growth and accumulation of cell compounds in Chlorella vulgaris and Tetradesmus obliquus cultured under nitrogen stress. J Appl Phycol 31:3465–3477. https://doi.org/10.1007/s10811-019-01862-1

    Article  CAS  Google Scholar 

  8. Choix FJ, López-Cisneros CG, Méndez-Acosta HO (2018) Azospirillum brasilense increases CO2 fixation on microalgae Scenedesmus obliquus, Chlorella vulgaris, and Chlamydomonas reinhardtii cultured on high CO2 concentrations. Microb Ecol 76:430–442. https://doi.org/10.1007/s00248-017-1139-z

    Article  CAS  PubMed  Google Scholar 

  9. de-Bashan LE, Mayali X, Bebout BM, Weber PK, Detweiler AM, Hernandez JP, Prufert-Bebout L, Bashan Y (2016) Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Res 15:179–186. https://doi.org/10.1016/j.algal.2016.02.019

    Article  Google Scholar 

  10. Palacios OA, Gomez-Anduro G, Bashan Y, de-Bashan LE (2016) Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 92:1–11. https://doi.org/10.1093/femsec/fiw077

    Article  CAS  Google Scholar 

  11. Ruiz-Güereca S-S, Sánchez-Saavedra MP (2016) Growth and phosphorus removal by Synechococcus elongatus co-immobilized in alginate beads with Azospirillum brasilense. J Appl Phycol 28:1501–1507. https://doi.org/10.1007/s10811-015-0728-9

    Article  CAS  Google Scholar 

  12. Nagarajan D, Lee DJ, Chang JS (2019) Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading. Bioresour Technol 290:121804. https://doi.org/10.1016/j.biortech.2019.121804

    Article  CAS  PubMed  Google Scholar 

  13. Kapoore RV, Padmaperuma G, Maneein S, Vaidyanathan S (2021) Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Crit Rev Biotechnol 1–37.https://doi.org/10.1080/07388551.2021.1921691

  14. Smith DL, Johnson KB, Darmstadt TU (1996) A guide to marine coastal plankton and marine invertebrate larvae. Kendall/ Hunt Publishing Company, Iowa

    Google Scholar 

  15. Choix FJ, Polster E, Corona-González RI, Snell-Castro R, Méndez-Acosta HO (2017) Nutrient composition of culture media induces different patterns of CO2 fixation from biogas and biomass production by the microalga Scenedesmus obliquus U169. Bioprocess Biosyst Eng 40:1733–1742. https://doi.org/10.1007/s00449-017-1828-5

    Article  CAS  PubMed  Google Scholar 

  16. de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y (2011) Cell-cell interaction in the eukaryote-prokaryote model of the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. J Phycol 47:1350–1359. https://doi.org/10.1111/j.1529-8817.2011.01062.x

    Article  PubMed  Google Scholar 

  17. Vega BOA, Lovina DV (2017) Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. CIBNOR, México

    Google Scholar 

  18. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  19. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Article  CAS  PubMed  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem 37:911–917

    CAS  PubMed  Google Scholar 

  22. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53. https://doi.org/10.1016/j.ecoleng.2016.11.013

    Article  Google Scholar 

  23. Pistorius AMA, DeGrip WJ, Egorova-Zachernyuk TA (2009) Monitoring of biomass composition from microbiological sources by means of FT-IR spectroscopy. Biotechnol Bioeng 103:123–129. https://doi.org/10.1002/bit.22220

    Article  CAS  PubMed  Google Scholar 

  24. Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Canada

    Book  Google Scholar 

  25. Ganusova EE, Vo LT, Mukherjee T, Alexandre G (2021) Multiple CheY Proteins Control Surface-Associated Lifestyles of Azospirillum brasilense. Front Microbiol 12:900. https://doi.org/10.3389/fmicb.2021.664826

    Article  Google Scholar 

  26. Duca DR, Glick BR (2020) Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl Microbiol Biotechnol 104:8607–8619. https://doi.org/10.1007/s00253-020-10869-5

    Article  CAS  PubMed  Google Scholar 

  27. Pagnussat LA, Maroniche G, Curatti L, Creus C (2020) Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense. Algal Res 47:101839. https://doi.org/10.1016/j.algal.2020.101839

    Article  Google Scholar 

  28. Peng H, de-Bashan LE, Bashan Y, Higgins BT (2020) Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. Algal Res 47:101845. https://doi.org/10.1016/j.algal.2020.101845

    Article  Google Scholar 

  29. Peng H, de-Bashan LE, Higgins BT (2021) Comparison of algae growth and symbiotic mechanisms in the presence of plant growth promoting bacteria and non-plant growth promoting bacteria. Algal Res 53:102156. https://doi.org/10.1016/j.algal.2020.102156

    Article  Google Scholar 

  30. Peng H, de-Bashan LE, Higgins BT (2021) Azospirillum brasilense reduces oxidative stress in the green microalgae Chlorella sorokiniana under different stressors. J Biotechnol 325:179–185. https://doi.org/10.1016/j.jbiotec.2020.10.029

    Article  CAS  PubMed  Google Scholar 

  31. Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  32. Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80. https://doi.org/10.1016/j.ejsobi.2008.05.006

    Article  CAS  Google Scholar 

  33. Ona O, Van Impe J, Prinsen E, Vanderleyden J (2005) Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol Lett 246:125–132. https://doi.org/10.1016/j.femsle.2005.03.048

    Article  CAS  PubMed  Google Scholar 

  34. Okon Y, Bar T, Tal S, Zaddy E (1991) Physiological properties of Azospirillum brasilense involved in root growth promotion. In: Polsnielli M, Naterassi R, Vincenzini M (eds) Nitrogen fixation. Kluwer academic publishers, Norwell, pp 113–125

    Chapter  Google Scholar 

  35. Mohanty S, Swain CK (2018) Role of microbes in climate smart agriculture. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution. Springer, Singapore, pp 129–140

    Chapter  Google Scholar 

  36. Bhattacharya M, Goswami S (2020) Microalgae – a green multi-product biorefinery for future industrial prospects. Biocatal Agric Biotechnol 25:101580. https://doi.org/10.1016/j.bcab.2020.101580

    Article  Google Scholar 

  37. Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol 102:123–129. https://doi.org/10.1016/j.biortech.2010.06.036

    Article  CAS  PubMed  Google Scholar 

  38. Choix FJ, Bashan Y, Mendoza A, de-Bashan LE (2014) Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol 177:22–34. https://doi.org/10.1016/j.jbiotec.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  39. Li T, Yang F, Xu J, Wu H, Mo J, Dai L, Xiang W (2020) Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions. Algal Res 45:101753. https://doi.org/10.1016/j.algal.2019.101753

    Article  Google Scholar 

  40. Rodas-Zuluaga LI, Castañeda-Hernández L, Castillo-Vacas EI, Gradiz-Menjivar A, López-Pacheco IY, Castillo-Zacarías C, Boully L, Iqbal HMN, Parra-Saldívar R (2021) Bio-capture and influence of CO2 on the growth rate and biomass composition of the microalgae Botryococcus braunii and Scenedesmus sp. J Co2 Util 43:101371. https://doi.org/10.1016/j.jcou.2020.101371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Francisco J. Choix acknowledges the Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) for the support under the Program-Project 90 Cátedras CONACyT and Martín Flores Martínez and Sergio Oliva León for scanning electron microscopy (SEM) service of CUCEI-UdG; to Diana Fischer for English edition.

Funding

This study was funded by the CONACyT- Frontiers of Science 2019 Project 15769.

Author information

Authors and Affiliations

Authors

Contributions

Barbosa-Nuñez J.A.: investigation and formal analysis. Oskar Palacios: writing — original draft, development, or design of methodology. Mondragón-Cortez P.: investigation, visualization, and formal analysis. Ocampo-Álvarez H. and Becerril-Espinosa A.: visualization, data curation, and formal analysis. Nevárez-Moorillón G.V.: data curation and writing — review and editing. Francisco Choix: writing — original draft, funding acquisition, project administration, and conceptualization.

Corresponding author

Correspondence to Francisco J. Choix.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12155_2022_10411_MOESM1_ESM.pdf

Supplementary file 1. Qualitative biomass characterization and dissolved inorganic carbon uptake of A. brasilense cultured in suspension or immobilized in alginate beads under biogas. (PDF 262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa-Nuñez, J.A., Palacios, O.A., Mondragón-Cortez, P. et al. Chemical and Physical Affinity of Microalga–Azospirillum Consortium Co-cultured in Suspension During CO2 Fixation from Biogas. Bioenerg. Res. 16, 579–592 (2023). https://doi.org/10.1007/s12155-022-10411-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10411-7

Keywords

Navigation