Skip to main content

Sugarcane Biorefineries: Status and Perspectives in Bioeconomy

Abstract

Biorefineries are core units that convert biomass resources to energy and bioproducts, representing the sustainable alternative to traditional fossil-based processes. The market size of biorefineries is expected to reach U$D 52,680 million by 2027, at a compound annual growth rate of 2.2% in the period of 2021–2027 (MarketWatch, 2021). Among several types of bioresources, sugarcane is the most important source of sugar and the second source of ethanol worldwide, being also exploited as a solid fuel in an efficient cogeneration system to produce bioelectricity. Sugarcane is a prominent feedstock for other bio-based products that could be obtained from sugarcane juice or molasses, from the lignocellulosic residues of sugarcane, or from by-products of alcoholic fermentation, like vinasse and CO2. This manuscript presents the status of sugarcane biorefineries in terms of bioeconomy metrics, scientific advances, and technological development, gathering information from scientific literature and patent documents with the aim of highlighting possible paths and promising bioproducts to be obtained from this unique crop at industrial level.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. MarketWatch (2021) Biorefinery market growth 2021 - global size, share, industry demand, ongoing trends, recent developments, future strategic planning, business overview, COVID-19 Impact, and Forecast 2027. https://www.marketwatch.com/press-release/biorefinery-market-growth-2021---global-size-share-industry-demand-ongoing-trends-recent-developments-future-strategic-planning-business-overview-covid-19-impact-and-forecast-2027-2021-11-23. Accessed 28 Jan 2022

  2. Karp SG, Medina JDC, Letti LAJ et al (2021) Bioeconomy and biofuels: the case of sugarcane ethanol in Brazil. Biofuels Bioprod Biorefining 15:899–912. https://doi.org/10.1002/BBB.2195

    Article  CAS  Google Scholar 

  3. Simião J (2021) Sugarcane production in Brazil in 2020 is revised to 677.9mt by IBGE. https://www.novacana.com/n/cana/safra/producao-cana-acucar-brasil-2020-revisada-677-9-mi-t-ibge-130121. Accessed 26 Jan 2022

  4. Freitas JV, Bilatto S, Squinca P et al (2021) Sugarcane biorefineries: potential opportunities towards shifting from wastes to products. Ind Crops Prod 172:114057. https://doi.org/10.1016/J.INDCROP.2021.114057

    Article  CAS  Google Scholar 

  5. Statista (2022) Sugar production in Brazil from 2009/2010 to 2020/21. https://www.statista.com/statistics/249677/production-of-sugar-in-brazil/. Accessed 28 Jan 2022

  6. Barros S (2021) Biofuels annual. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Biofuels%20Annual_Sao%20Paulo%20ATO_Brazil_08–02–2021.pdf. Accessed 27 Jan 2022

  7. Rabelo SC, de Paiva LBB, Pin TC et al (2020) Chemical and energy potential of sugarcane. Sugarcane Biorefinery Technol Perspect 141–163.https://doi.org/10.1016/B978-0-12-814236-3.00008-1

  8. Bertrand E, Vandenberghe LPS, Soccol CR et al (2016) First generation bioethanol. Green Energy Technol 0:175–212. https://doi.org/10.1007/978-3-319-30205-8_8

    Article  Google Scholar 

  9. Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8. https://doi.org/10.1016/J.BIORTECH.2014.01.127

    Article  CAS  PubMed  Google Scholar 

  10. Maga D, Thonemann N, Hiebel M et al (2019) Comparative life cycle assessment of first- and second-generation ethanol from sugarcane in Brazil. Int J Life Cycle Assess 24:266–280. https://doi.org/10.1007/S11367-018-1505-1

    Article  CAS  Google Scholar 

  11. Stichnothe H, Meier D, de Bari I (2016) Biorefineries - industry status and economics. In: Lamers P, Searcy E, Hess JR, Stichnothe H (eds) Developing the global bioeconomy, 1st edn. Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  12. Dunkelberg E, Finkbeiner M, Hirschl B (2014) Sugarcane ethanol production in Malawi: measures to optimize the carbon footprint and to avoid indirect emissions. Biomass Bioenergy 71:37–45. https://doi.org/10.1016/J.BIOMBIOE.2013.10.006

    Article  CAS  Google Scholar 

  13. Gerbens-Leenes W, Hoekstra AY (2012) The water footprint of sweeteners and bio-ethanol. Environ Int 40:202–211. https://doi.org/10.1016/J.ENVINT.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  14. Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Chang 711(7):788–792. https://doi.org/10.1038/nclimate3410

    Article  Google Scholar 

  15. Aguilar-Rivera N (2022) Footprint analysis of sugarcane bioproducts. Green Energy Technol:183–214.https://doi.org/10.1007/978-3-030-76441-8_9

  16. Arvanitoyannis IS (2008) Waste management for the food industries. Waste Manag Food Ind. https://doi.org/10.1016/B978-0-12-373654-3.X5001-9

    Article  Google Scholar 

  17. Brazil (2017) Law 13.576 - 26 December 2017 [WWW Document]. Natl. Policy Biofuels. https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2017/lei/l13576.htm. Accessed 25 Nov 2021

  18. Lovarelli D, Bacenetti J, Fiala M (2016) Water footprint of crop productions: a review. Sci Total Environ 548–549:236–251. https://doi.org/10.1016/J.SCITOTENV.2016.01.022

    Article  PubMed  Google Scholar 

  19. Water Footprint Network (2021) Water Footprint Network What is a water footprint? https://waterfootprint.org/en/water-footprint/what-is-water-footprint/. Accessed 28 Jan 2022

  20. Scarpare FV, Hernandes TAD, Ruiz-Corrêa ST et al (2016) Sugarcane water footprint under different management practices in Brazil: Tietê/Jacaré watershed assessment. J Clean Prod 112:4576–4584. https://doi.org/10.1016/J.JCLEPRO.2015.05.107

    Article  Google Scholar 

  21. Mekonnen MM, Romanelli TL, Ray C et al (2018) Water, energy, and carbon footprints of bioethanol from the U.S. and Brazil. Environ Sci Technol 52:14508–14518. https://doi.org/10.1021/acs.est.8b03359

    Article  CAS  PubMed  Google Scholar 

  22. Machado KS, Seleme R, Maceno MM, Zattar IC (2017) Carbon footprint in the ethanol feedstocks cultivation – agricultural CO2 emission assessment. Agric Syst 157:140–145. https://doi.org/10.1016/J.AGSY.2017.07.015

    Article  Google Scholar 

  23. Santos F, De Matos M, Rabelo SC, Eichler P (2019) Sugarcane biorefinery, technology and perspectives. Sugarcane Biorefinery Technol Perspect:1–289.https://doi.org/10.1016/C2017-0-00884-4

  24. Dias MOS, Junqueira TL, Cavalett O et al (2012) Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash. Bioresour Technol 103:152–161. https://doi.org/10.1016/J.BIORTECH.2011.09.120

    Article  CAS  PubMed  Google Scholar 

  25. Granbio (2021) BioFlex® I: biofuel production. http://www.granbio.com.br/en/conteudos/biofuels/. Accessed 28 Jan 2022

  26. Gomes JR (2018) Raízen’s E2G plant to reach maximum capacity in 2019/20. https://www.novacana.com/n/etanol/2-geracao-celulose/usina-e2g-raizen-capacidade-maxima-2019-20-190318. Accessed 28 Jan 2022

  27. Hiloidhari M, Haran S, Banerjee R, Rao AB (2021) Life cycle energy–carbon–water footprints of sugar, ethanol and electricity from sugarcane. Bioresour Technol 330:125012. https://doi.org/10.1016/J.BIORTECH.2021.125012

    Article  CAS  PubMed  Google Scholar 

  28. Finkbeiner M, Inaba A, Tan RBH et al (2006) (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 112(11):80–85. https://doi.org/10.1065/LCA2006.02.002

    Article  Google Scholar 

  29. Violante, A de C (2018) Evaluation of the sustainability indicators of sugarcane mills in the Sertãozinho region, São Paulo, Brazil: case study. Thesis, Universidade de São Paulo

  30. Caldeira-Pires A, Benoist A, da Luz SM et al (2018) Implications of removing straw from soil for bioenergy: an LCA of ethanol production using total sugarcane biomass. J Clean Prod 181:249–259. https://doi.org/10.1016/J.JCLEPRO.2018.01.119

    Article  CAS  Google Scholar 

  31. Cargill (2022) Acidulants & Citrates. https://www.cargill.com/food-beverage/lat/acidulants-and-citrates-latam. Accessed 29 Jan 2022

  32. Ajinomoto (2022) What is MSG and how is it made? | Monosodium Glutamate (MSG) | Ajinomoto Group Global Website - Eat Well, Live Well. https://www.ajinomoto.com/msg/what-is-msg-and-how-is-it-made. Accessed 29 Jan 2022

  33. Braskem (2020) Low density I’m green polyethilene (LDPE). https://www.braskem.com.br/Portal/Principal/Arquivos/ModuloHTML/Documentos/846/AF_Catalogo_PE%20Verde_2014_ING_site.pdf. Accessed 28 Jan 2022

  34. Raízen (2020) Raízen inaugurates biogas plant and strengthens its renewable energy portfolio. https://www.raizen.com.br/en/press-office/raizen-inaugura-planta-de-biogas-e-consolida-portfolio-de-energias-renovaveis. Accessed 29 Jan 2022

  35. Lallemand (2021) Mascoma. https://www.lallemand.com/research/mascoma/. Accessed 29 Nov 2021

  36. NovaCana (2013) Mascoma Corporation: the path to commercial production. https://www.novacana.com/n/etanol/2-geracao-celulose/mascoma-corporation-09102013. Accessed 29 Nov 2021

  37. Brazil (2018) Action plan of science, technology and innovation in bioeconomy. https://antigo.mctic.gov.br/mctic/export/sites/institucional/ciencia/SEPED/Arquivos/PlanosDeAcao/PACTI_BIOECONOMIA_web.pdf; https://fapesp.br/eventos/2017/6dialogue/08-11-17/15h45_Bruno_Nunes.pdf. Accessed 30 Nov 2021

  38. Stichnothe H, Storz H, Meier D et al (2016) Development of second-generation biorefineries. In: Lamers P, Searcy E, Hess JR, Stichnothe H (eds) Developing the global bioeconomy, 1st edn. Elsevier, Amsterdam, pp 1–31

    Google Scholar 

  39. Soccol CR (2004) Production of microbial biomass for biodiesel manufacture consists of extraction of lipids by submerged culture from sugar cane derivatives to increase versatility. Patent number BR200406347-B1.

  40. Soccol CR, Dalmas Neto CJ, Soccol VT et al (2017) Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study. Bioresour Technol 223:259–268. https://doi.org/10.1016/j.biortech.2016.10.055

    Article  CAS  PubMed  Google Scholar 

  41. Soccol CR, Colonia BSO, Pereira GVM, Karp SG (2020) Bioprocess for the production of docosahexaenoic acid-rich traustochytrid biomass using agro-industrial residues and bioproduct composed of traustochytrid biomass. Patent number BR10202002621.

  42. Sydney EB, Neto CJD, de Carvalho JC et al (2019) Microalgal biorefineries: integrated use of liquid and gaseous effluents from bioethanol industry for efficient biomass production. Bioresour Technol 292.https://doi.org/10.1016/J.BIORTECH.2019.121955

  43. Pawar AA, Lee D, Chung W, Kim H (2020) Understanding the synergy between MgO-CeO2 as an effective promoter and ionic liquids for high dimethyl carbonate production from CO2 and methanol. Chem Eng J 395:124970. https://doi.org/10.1016/j.cej.2020.124970

    Article  CAS  Google Scholar 

  44. Riemer D, Hirapara P, Das S (2016) Chemoselective synthesis of carbamates using CO2 as carbon source. Chem Sustain Energy Mater 3:1916–1920. https://doi.org/10.1002/cssc.201600521

    Article  CAS  Google Scholar 

  45. Tamura M, Noro K, Honda M et al (2013) Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chem 15:1567–1577. https://doi.org/10.1039/c3gc40495a

    Article  CAS  Google Scholar 

  46. Vessally E, Babazadeh M, Hosseinian A et al (2017) Nanocatalysts for chemical transformation of carbon dioxide. J CO2 Util 21:491–502. https://doi.org/10.1016/j.jcou.2017.08.014

    Article  CAS  Google Scholar 

  47. de Jong E, Stichnothe H, Bell G et al (2020) Bio-based chemicals A 2020 Update Bio-Based Chemicals With input from: (pdf version) Published by IEA Bioenergy. https://www.ieabioenergy.com/wp-content/uploads/2020/02/Bio-based-chemicals-a-2020-update-final-200213.pdf. Accessed 30 Jul 2021

  48. Acosta-Cárdenas A, Alcaraz-Zapata W, Cardona-Betancur M (2018) Sugarcane molasses and vinasse as a substrate for polyhydroxyalkanoates (PHA) production. DYNA 85:220–225. https://doi.org/10.15446/DYNA.V85N206.68279

    Article  Google Scholar 

  49. Dalsasso RR, Pavan FA, Bordignon SE et al (2019) Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochem 85:12–18. https://doi.org/10.1016/J.PROCBIO.2019.07.007

    Article  CAS  Google Scholar 

  50. Sen KY, Hussin MH, Baidurah S (2019) Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator from various pretreated molasses as carbon source. Biocatal Agric Biotechnol 17:51–59. https://doi.org/10.1016/J.BCAB.2018.11.006

    Article  Google Scholar 

  51. Saranya V, Shenbagarathai R (2011) Production and characterization of PHA from recombinant E. coli harbouring phaC1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Braz J Microbiol 42:1109–1118. https://doi.org/10.1590/S1517-83822011000300032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. de Oliveira GHD, Niz MYK, Zaiat M, Rodrigues JAD (2019) Effects of the organic loading rate on polyhydroxyalkanoate production from sugarcane stillage by mixed microbial cultures. Appl Biochem Biotechnol 189:1039–1055. https://doi.org/10.1007/S12010-019-03051-9

    Article  PubMed  Google Scholar 

  53. Serna-Cock L, Parrado-Saboya DS (2014) Sugarcane juice for polyhydroxyalkanoate (PHA) production by batch fermentation. Afr J Biotechnol 13:4019–4027. https://doi.org/10.5897/AJB2014.14035

    Article  Google Scholar 

  54. Lopes MSG, Gosset G, Rocha RCS et al (2011) PHB biosynthesis in catabolite repression mutant of Burkholderia sacchari. Curr Microbiol 63:319–326. https://doi.org/10.1007/S00284-011-9981-6

    Article  CAS  PubMed  Google Scholar 

  55. Terán Hilares R, Resende J, Orsi CA et al (2019) Exopolysaccharide (pullulan) production from sugarcane bagasse hydrolysate aiming to favor the development of biorefineries. Int J Biol Macromol 127:169–177. https://doi.org/10.1016/J.IJBIOMAC.2019.01.038

    Article  PubMed  Google Scholar 

  56. Chen Y, Guo J, Li F et al (2014) Production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82 with pH control and DL-dithiothreitol addition. Biotechnol Bioprocess Eng 19:282–288. https://doi.org/10.1007/S12257-013-0715-4

    Article  CAS  Google Scholar 

  57. De Souza KC, Trindade NM, De Amorim JDP et al (2021) Kinetic study of a bacterial cellulose production by Komagataeibacter rhaeticus using coffee grounds and sugarcane molasses. Mater Res 24:20200454. https://doi.org/10.1590/1980-5373-MR-2020-0454

    Article  Google Scholar 

  58. Mesa L, González E, Romero I et al (2011) Comparison of process configurations for ethanol production from two-step pretreated sugarcane bagasse. Chem Eng J 175:185–191. https://doi.org/10.1016/J.CEJ.2011.09.092

    Article  CAS  Google Scholar 

  59. Wanderley MC de A, Martín C, Rocha GJ de M, Gouveia ER (2013) Increase in ethanol production from sugarcane bagasse based on combined pretreatments and fed-batch enzymatic hydrolysis. Bioresour Technol 128:448–453. https://doi.org/10.1016/J.BIORTECH.2012.10.131

    Article  PubMed  Google Scholar 

  60. Mokomele T, Da Costa SL, Balan V et al (2018) Ethanol production potential from AFEX™ and steam-exploded sugarcane residues for sugarcane biorefineries. Biotechnol Biofuels 11:1–21. https://doi.org/10.1186/S13068-018-1130-Z/FIGURES/6

    Article  Google Scholar 

  61. Geddes CC, Mullinnix MT, Nieves IU et al (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM160. Bioresour Technol 102:2702–2711. https://doi.org/10.1016/J.BIORTECH.2010.10.143

    Article  CAS  PubMed  Google Scholar 

  62. Singh A, Sharma P, Saran AK et al (2013) Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices. Renew Energy 50:488–493. https://doi.org/10.1016/J.RENENE.2012.07.003

    Article  CAS  Google Scholar 

  63. Asgher M, Ahmad Z, Iqbal HMN (2013) Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod 44:488–495. https://doi.org/10.1016/J.INDCROP.2012.10.005

    Article  CAS  Google Scholar 

  64. Nakanishi SC, Soares LB, Biazi LE et al (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/BIT.26357

    Article  CAS  PubMed  Google Scholar 

  65. Campanhol BS, Silveira GC, Castro MC et al (2019) Effect of the nutrient solution in the microbial production of citric acid from sugarcane bagasse and vinasse. Biocatal Agric Biotechnol 19:101147. https://doi.org/10.1016/J.BCAB.2019.101147

    Article  Google Scholar 

  66. Almakki A, Mirghani MES, Kabbashi NA (2019) Production of citric acid from sugarcane molasses by Aspergillus niger using submerged fermentation. Biol Nat Resour Eng J 2:47–55

    Google Scholar 

  67. Sun Y, Xu Z, Zheng Y et al (2019) Efficient production of lactic acid from sugarcane molasses by a newly microbial consortium CEE-DL15. Process Biochem 81:132–138. https://doi.org/10.1016/J.PROCBIO.2019.03.022

    Article  CAS  Google Scholar 

  68. Chen P, Tao S, Zheng P (2016) Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresour Technol 211:406–413. https://doi.org/10.1016/J.BIORTECH.2016.03.108

    Article  CAS  PubMed  Google Scholar 

  69. Nieder-Heitmann M, Haigh KF, Görgens JF (2018) Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour Technol 262:159–168. https://doi.org/10.1016/J.BIORTECH.2018.04.075

    Article  CAS  PubMed  Google Scholar 

  70. Pal P, Dekonda VC, Kumar R (2015) Fermentative production of glutamic acid from renewable carbon source: process intensification through membrane-integrated hybrid bio-reactor system. Chem Eng Process Process Intensif 92:7–17. https://doi.org/10.1016/J.CEP.2015.03.022

    Article  CAS  Google Scholar 

  71. Ahmadi N, Khosravi-Darani K, Mortazavian AM, Mashayekh SM (2017) Effects of process variables on fed-batch production of propionic acid. J Food Process Preserv 41:e12853. https://doi.org/10.1111/JFPP.12853

    Article  Google Scholar 

  72. Zetty-Arenas AM, Alves RF, Portela CAF et al (2019) Towards enhanced n-butanol production from sugarcane bagasse hemicellulosic hydrolysate: strain screening, and the effects of sugar concentration and butanol tolerance. Biomass Bioenergy 126:190–198. https://doi.org/10.1016/J.BIOMBIOE.2019.05.011

    Article  CAS  Google Scholar 

  73. Zhang J, Yu L, Xu M et al (2017) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Appl Microbiol Biotechnol 10110(101):4327–4337. https://doi.org/10.1007/S00253-017-8200-1

    Article  Google Scholar 

  74. Pang ZW, Lu W, Zhang H et al (2016) Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7–2-4. Bioresour Technol 212:82–91. https://doi.org/10.1016/J.BIORTECH.2016.04.013

    Article  CAS  PubMed  Google Scholar 

  75. Aguiar MM, Ferreira LFR, Monteiro RTR (2010) Use of vinasse and sugarcane bagasse for the production of enzymes by lignocellulolytic fungi. Braz Arch Biol Technol 53:1245–1254. https://doi.org/10.1590/S1516-89132010000500010

    Article  CAS  Google Scholar 

  76. Veana F, Martínez-Hernández JL, Aguilar CN et al (2014) Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1. Braz J Microbiol 45:373–377. https://doi.org/10.1590/S1517-83822014000200002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Marim RA, Oliveira ACC, Marquezoni RS et al (2016) Use of sugarcane molasses by Pycnoporus sanguineus for the production of laccase for dye decolorization. Genet Mol Res 15:1–9. https://doi.org/10.4238/gmr15048972

    Article  CAS  Google Scholar 

  78. Maehara L, Pereira SC, Silva AJ, Farinas CS (2018) One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol Prog 34:671–680. https://doi.org/10.1002/BTPR.2619

    Article  CAS  PubMed  Google Scholar 

  79. Ferreira FL, Dall’antonia CB, Andrade Shiga E et al (2018) Sugarcane bagasse as a source of carbon for enzyme production by filamentous fungi. Hoehnea 45:134–142. https://doi.org/10.1590/2236-8906-40/2017

    Article  Google Scholar 

  80. Frassatto PAC, Casciatori FP, Thoméo JC et al (2021) β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Convers Biorefinery 11:503–513. https://doi.org/10.1007/S13399-020-00608-1/FIGURES/3

    Article  CAS  Google Scholar 

  81. Scarcella AS de A, Pasin TM, de Lucas RC et al (2021) Holocellulase production by filamentous fungi: potential in the hydrolysis of energy cane and other sugarcane varieties. Biomass Convers Biorefinery:1–12.https://doi.org/10.1007/S13399-021-01304-4/TABLES/4

  82. Khatun MS, Hassanpour M, Harrison MD et al (2021) Highly efficient production of transfructosylating enzymes using low-cost sugarcane molasses by A. pullulans FRR 5284. Bioresour Bioprocess 8:48. https://doi.org/10.1186/s40643-021-00399-x

    Article  Google Scholar 

  83. Siqueira LM, Damiano ESG, Silva EL (2013) Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogas production in fluidized bed reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:1707–1716. https://doi.org/10.1080/10934529.2013.815535

    Article  CAS  PubMed  Google Scholar 

  84. Liu Y, Xu J, Zhang Y et al (2015) Sequential bioethanol and biogas production from sugarcane bagasse based on high solids fed-batch SSF. Energy 90:1199–1205. https://doi.org/10.1016/J.ENERGY.2015.06.066

    Article  CAS  Google Scholar 

  85. Gomes de Barros V, Duda RM, da Silva Vantini J et al (2017) Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresour Technol 244:371–381. https://doi.org/10.1016/j.biortech.2017.07.106

    Article  CAS  Google Scholar 

  86. Mustafa AM, Li H, Radwan AA et al (2018) Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60. https://doi.org/10.1016/J.BIORTECH.2018.03.028

    Article  CAS  PubMed  Google Scholar 

  87. Hashemi SS, Karimi K, Karimi AM (2019) Ethanolic ammonia pretreatment for efficient biogas production from sugarcane bagasse. Fuel 248:196–204. https://doi.org/10.1016/J.FUEL.2019.03.080

    Article  Google Scholar 

  88. Kiani Deh Kiani M, Parsaee M, Mahdavifar Z (2021) Biogas production from sugarcane vinasse at mesophilic and thermophilic temperatures by static granular bed reactor (SGBR). Sustain Energy Technol Assessments 48:101569. https://doi.org/10.1016/J.SETA.2021.101569

    Article  Google Scholar 

  89. MarketsandMarkets (2020) Bioethanol market global forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/bioethanol-market-131222570.html?gclid=EAIaIQobChMIkoftoLPV9QIVhRCRCh32_QjtEAAYASAAEgI1efD_BwE. Accessed 26 Jan 2022

  90. FactMr (2021) Organic acids market trends, forecast & overview to 2031. https://www.factmr.com/report/4285/organic-acids-market. Accessed 28 Jan 2022

  91. FortuneBusinessInsigths (2021) Biogas market size, growth & analysis - industry report [2028]. https://www.fortunebusinessinsights.com/industry-reports/biogas-market-100910. Accessed 28 Jan 2022

  92. MarketsandMarkets (2021) Bioplastics & biopolymers market global forecast to 2026. https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html. Accessed 26 Jan 2022

  93. MarketsandMarkets (2022) Industrial enzymes market global outlook, trends, and forecast to 2026. https://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html#:~:text=industrial%20enzymes market%3F-,The global industrial enzymes market is estimated to be valued,6.6%25%20during%20the%20forecast%20period. Accessed 26 Jan 2022

  94. MarketWatch (2021) Bio-butanol market: global industry trends, growth, size, segmentation, future demands, latest innovation, sales revenue by regional forecast to 2027. https://www.marketwatch.com/press-release/bio-butanol-market-global-industry-trends-growth-size-segmentation-future-demands-latest-innovation-sales-revenue-by-regional-forecast-to-2027-2021-12-10. Accessed 28 Jan 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ricardo Soccol.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karp, S.G., Schmitt, C.C., Moreira, R. et al. Sugarcane Biorefineries: Status and Perspectives in Bioeconomy. Bioenerg. Res. 15, 1842–1853 (2022). https://doi.org/10.1007/s12155-022-10406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10406-4

Keywords

  • Life-cycle assessment
  • Water footprint
  • Patent search
  • Scientific and technological development