Skip to main content
Log in

Application of Diffusion-Ordered NMR Spectroscopy to the Characterization of Sweet Sorghum Bagasse Lignin Isolated After Low Moisture Anhydrous Ammonia (LMAA) Pretreatment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Lignin isolated from sweet sorghum bagasse after the low moisture anhydrous ammonia (LMAA) pretreatment was characterized by using diffusion-ordered nuclear magnetic resonance (NMR) spectroscopy in combination with one-dimensional 1H, multinuclear two-dimensional NMR (HSQC, HMBC, HSQC-TOCSY), and elemental analysis to correlate structural observations with molecular weight. The LMAA lignin was compared with a commercial soda lignin product. The 1H diffusion-ordered spectra indicate that the aromatic components (6.0–8.5 ppm) in the LMAA lignin cover a wider diffusivity range, and therefore broader molecular weight range, than did the soda lignin, and that its weight average molecular weight was also higher. Fractionation of the LMAA lignin based on solubility in methanol revealed that this property was largely dependent on the molecular weights of the components, as both the soluble and insoluble fractions contained similar structures. Also observed by 1H NMR was a significant amount of residual ammonium present from the biomass pretreatment. This ammonium was largely fractionated into the methanol soluble fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Summarized diffusion NMR data are available in supplementary material.

Code Availability

Not applicable.

References

  1. Caye M. Drapcho NPN, Terry H. Walker (2020) Biofuels engineering process technology. 2nd edn. McGraw Hill

  2. Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Montagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbe N, Harper DP, Maravaelias CT, Runge T, Dumesic JA (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Science Advances 5:e1603301

    Article  Google Scholar 

  3. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150. https://doi.org/10.1016/j.jaap.2013.10.013

    Article  CAS  Google Scholar 

  4. Cheng F, Bayat H, Jena U, Brewer CE (2020) Impact of feedstock composition on pyrolysis of low-cost, protein- and lignin-rich biomass: a review. J Anal Appl Pyrolysis 147. https://doi.org/10.1016/j.jaap.2020.104780

  5. Patwardhan PR, Brown RC, Shanks BH (2011) Understanding the fast pyrolysis of lignin. Chemsuschem 4(11):1629–1636. https://doi.org/10.1002/cssc.201100133

    Article  CAS  PubMed  Google Scholar 

  6. Poveda-Giraldo JA, Solarte-Toro JC, Cardona Alzate CA (2021) The potential use of lignin as a platform product in biorefineries: a review. Renewable and Sustainable Energy Reviews 138. https://doi.org/10.1016/j.rser.2020.110688

  7. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678. https://doi.org/10.1021/acs.chemrev.7b00588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin M, da Costa SL, Schwartz C, He Y, Sarks C, Gunawan C, Balan V, Dale BE (2016) Toward lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chem 18(4):957–966. https://doi.org/10.1039/c5gc02433a

    Article  CAS  Google Scholar 

  9. Kim JS, Lee YY, Kim TH (2016) A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour Technol 199:42–48. https://doi.org/10.1016/j.biortech.2015.08.085

    Article  CAS  PubMed  Google Scholar 

  10. Yu M, Li J, Chang S, Zhang L, Mao Y, Cui T, Yan Z, Luo C, Li S (2016) Bioethanol production using the sodium hydroxide pretreated sweet sorghum bagasse without washing. Fuel 175:20–25. https://doi.org/10.1016/j.fuel.2016.02.012

    Article  CAS  Google Scholar 

  11. Yang M, Rosentrater KA (2017) Small-scale low-moisture anhydrous ammonia (LMAA) pretreatment of corn stover. Biomass Bioenergy 97:38–42. https://doi.org/10.1016/j.biombioe.2016.12.013

    Article  CAS  Google Scholar 

  12. Yoo CG, Nghiem NP, Hicks KB, Kim TH (2011) Pretreatment of corn stover using low-moisture anhydrous ammonia (LMAA) process. Bioresour Technol 102(21):10028–10034. https://doi.org/10.1016/j.biortech.2011.08.057

    Article  CAS  PubMed  Google Scholar 

  13. Yoo CG, Kim H, Lu F, Azarpira A, Pan X, Oh KK, Kim JS, Ralph J, Kim TH (2015) Understanding the physicochemical characteristics and the improved enzymatic saccharification of corn stover pretreated with aqueous and gaseous ammonia. BioEnergy Research 9(1):67–76. https://doi.org/10.1007/s12155-015-9662-6

    Article  CAS  Google Scholar 

  14. Wen JL, Sun SL, Xue BL, Sun RC (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel) 6(1):359–391. https://doi.org/10.3390/ma6010359

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pu Y, Cao S, Ragauskas AJ (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy & Environmental Science 4 (9). https://doi.org/10.1039/c1ee01201k

  16. Montgomery JRD, Bazley P, Lebl T, Westwood NJ (2019) Using fractionation and diffusion ordered spectroscopy to study lignin molecular weight. ChemistryOpen 8(5):601–605. https://doi.org/10.1002/open.201900129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Montgomery JRD, Lancefield CS, Miles-Barrett DM, Ackermann K, Bode BE, Westwood NJ, Lebl T (2017) Fractionation and DOSY NMR as analytical tools: from model polymers to a technical lignin. ACS Omega 2(11):8466–8474. https://doi.org/10.1021/acsomega.7b01287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoklosa RJ, Johnston DB, Nghiem NP (2019) Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for astaxanthin generation. Process Biochem 83:9–17. https://doi.org/10.1016/j.procbio.2019.04.005

    Article  CAS  Google Scholar 

  19. Kim J-Y, Choi JW (2019) Effect of molecular size of lignin on the formation of aromatic hydrocarbon during zeolite catalyzed pyrolysis. Fuel 240:92–100. https://doi.org/10.1016/j.fuel.2018.11.116

    Article  CAS  Google Scholar 

  20. Wu D, Chen A, Johnson CS Jr (1995) An improved diffusion ordered spectroscopy experiment incorporating biopolar graident pulses. J Magn Reson, Ser A 115:260–264

    Article  CAS  Google Scholar 

  21. Mullen CA, Strahan GD, Boateng AA (2019) Characterization of biomass pyrolysis oils by diffusion ordered NMR spectroscopy. ACS Sustainable Chemistry & Engineering 7(24):19951–19960. https://doi.org/10.1021/acssuschemeng.9b05520

    Article  CAS  Google Scholar 

  22. Iwashita T, Konuma T, Harada E, Mori S, Sugase K (2016) Use of glass capillaries to suppress thermal convection in NMR tubes in diffusion measurements. Magn Reson Chem 54(9):729–733. https://doi.org/10.1002/mrc.4437

    Article  CAS  PubMed  Google Scholar 

  23. Mullen CA, Strahan GD, Boateng AA (2009) Characterization of various fast pyrolysis bio-oils by NMR spectroscopy. Energy Fuels 23:2707–2718

    Article  CAS  Google Scholar 

  24. Evans R, Dal Poggetto G, Nilsson M, Morris GA (2018) Improving the interpretation of small molecule diffusion coefficients. Anal Chem 90(6):3987–3994. https://doi.org/10.1021/acs.analchem.7b05032

    Article  CAS  PubMed  Google Scholar 

  25. Evans R, Deng Z, Rogerson AK, McLachlan AS, Richards JJ, Nilsson M, Morris GA (2013) Quantitative interpretation of diffusion-ordered NMR spectra: can we rationalize small molecule diffusion coefficients? Angew Chem Int Ed Engl 52(11):3199–3202. https://doi.org/10.1002/anie.201207403

    Article  CAS  PubMed  Google Scholar 

  26. Strahan GD, Mullen CA, Boateng AA (2016) Prediction of properties and elemental composition of biomass pyrolysis oils by NMR and partial least squares analysis. Energy Fuels 30(1):423–433. https://doi.org/10.1021/acs.energyfuels.5b02345

    Article  CAS  Google Scholar 

  27. Boyer RD, Johnson R, Krishnamurthy K (2003) Compensation of refocusing inefficiency with synchronized inversion sweep (CRISIS) in multiplicity-edited HSQC. J Magn Reson 165(2):253–259. https://doi.org/10.1016/j.jmr.2003.08.009

    Article  CAS  PubMed  Google Scholar 

  28. Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco

    Google Scholar 

  29. Fortin M, Mohadjer Beromi M, Lai A, Tarves PC, Mullen CA, Boateng AA, West NM (2015) Structural analysis of pyrolytic lignins isolated from switchgrass fast-pyrolysis oil. Energy Fuels 29(12):8017–8026. https://doi.org/10.1021/acs.energyfuels.5b01726

    Article  CAS  Google Scholar 

  30. Yuan TQ, Sun SN, Xu F, Sun RC (2011) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J Agric Food Chem 59(19):10604–10614. https://doi.org/10.1021/jf2031549

    Article  CAS  PubMed  Google Scholar 

  31. Hu G, Cateto C, Pu Y, Samuel R, Ragauskas AJ (2011) Structural characterization of switchgrass lignin after ethanol organosolv pretreatment. Energy Fuels 26(1):740–745. https://doi.org/10.1021/ef201477p

    Article  CAS  Google Scholar 

  32. Field LD, Hazari N, Li HL (2015) Nitrogen fixation revisited on iron(0) dinitrogen phosphine complexes. Inorg Chem 54(10):4768–4776. https://doi.org/10.1021/acs.inorgchem.5b00211

    Article  CAS  PubMed  Google Scholar 

  33. Sipponen MH, Osterberg M (2019) Aqueous Ammonia pre-treatment of wheat straw: process optimization and broad spectrum dye adsorption on nitrogen-containing lignin. Front Chem 7:545. https://doi.org/10.3389/fchem.2019.00545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoo CG, Li M, Meng X, Pu Y, Ragauskas AJ (2017) Effects of organosolv and ammonia pretreatments on lignin properties and its inhibition for enzymatic hydrolysis. Green Chem 19(8):2006–2016. https://doi.org/10.1039/c6gc03627a

    Article  CAS  Google Scholar 

  35. Terrett OM, Dupree P (2019) Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr Opin Biotechnol 56:97–104. https://doi.org/10.1016/j.copbio.2018.10.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the U.S. Department of Agriculture, Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary D. Strahan or Charles A. Mullen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors have consented to publication. All permission to publish has been provided by USDA-ARS.

Conflict of Interest

Author Charles A. Mullen is an associate editor of the journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mention of trade names or commercial products in this publication is solely to provide specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 652 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strahan, G.D., Mullen, C.A. & Stoklosa, R.J. Application of Diffusion-Ordered NMR Spectroscopy to the Characterization of Sweet Sorghum Bagasse Lignin Isolated After Low Moisture Anhydrous Ammonia (LMAA) Pretreatment. Bioenerg. Res. 15, 1449–1458 (2022). https://doi.org/10.1007/s12155-021-10385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10385-y

Keywords

Navigation