Skip to main content

Advertisement

Log in

Thermochemical Conversion of Sargassum for Energy Production: a Comprehensive Review

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The use of algal biomass as a renewable source of energy is potentially promising. The literature on biofuels derived from Sargassum is limited compared to other macroalgae. The unusual seaweed bloom of Sargassum from 2011 to date can be caused by the following factors: eutrophication of the sea, climate change, and other oceanographic patterns. The atypical invasion has had great ecological and economic effects in the affected regions. Traditionally, Sargassum has been recovered from coasts and beaches for use as fertilizer, but new markets need to be found to exploit the large volumes produced by the seaweed influx and mitigate its impact. The biochemical composition of Sargassum biomass defines it as a potential feedstock for biofuel production. However, the high moisture and ash content constitute the limitations for the development of some energy extraction methods. On the other hand, the costs associated with the removal of high volumes of accumulated Sargassum from coasts and beaches, transportation, cleaning, and storage are relatively high. Therefore, the production of biofuels from Sargassum seaweed is still a technical, economic, and energy challenge. This review proposes a multifactorial approach to the potential use of Sargassum biomass as feedstock for energy production, especially by thermochemical conversion (combustion, gasification, pyrolysis, and hydrothermal liquefaction). The survey analyses the chemical composition, biomass productivity and coastal impact, energy output, thermochemical conversion processes, techno-economic challenges, and future perspectives. In addition, a Sargassum biomass biorefinery approach with a circular bioeconomy approach is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Tursi A (2019) A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 22:962–79 https://doi.org/10.18331/BRJ2019.6.2.3

  2. Lauri P, Havlík P, Kindermann G, Forsell N, Böttcher H, Obersteiner M (2014) Woody biomass energy potential in 2050. Energy Policy 66:19–31. https://doi.org/10.1016/j.enpol.2013.11.033

    Article  Google Scholar 

  3. Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) Corrigendum to a review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sustain Energy Rev 54:473–481. https://doi.org/10.1016/j.rser.2018.08.048

    Article  CAS  Google Scholar 

  4. Sánchez-Borroto Y, Lapuerta M, Melo-Espinosa EA, Bolonio D, Tobío-Pérez I, Piloto-Rodríguez R (2018) Green-filamentous macroalgae Chaetomorpha cf. gracilis from Cuban wetlands as a feedstock to produce alternative fuel: a physicochemical characterization. Energy Sources Part Recovery Util Environ Eff 40:1279–1289. https://doi.org/10.1080/15567036.2018.1476931

    Article  CAS  Google Scholar 

  5. Jalilian N, Najafpour GD, Khajouei M (2020) Macro and micro algae in pollution control and biofuel production- a review. Chem Bio Eng Rev 7:1–17. https://doi.org/10.1002/cben.201900014

    Article  CAS  Google Scholar 

  6. Piloto-Rodríguez R, Sánchez-Borroto Y, Melo-Espinosa EA, Verhelst S (2017) Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: an overview. Renew Sustain Energy Rev 69:833–842. https://doi.org/10.1016/j.rser.2016.11.015

    Article  CAS  Google Scholar 

  7. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Bioeng Biotechnol 2:1–13. https://doi.org/10.3389/fbioe.2014.00090

    Article  Google Scholar 

  8. Perez CM, Pajares IG, Alcantara VA, Simbahan JF (2018) Bacterial laminarinase for application in ethanol production from brown algae Sargassum sp. using halotolerant yeast. Biofuel Res J 17:792–797 https://doi.org/10.18331/BRJ2018.5.1.6

  9. Borowitzka MA, Moheimani NR (2013) Algae for biofuels and energy. Springer, Netherlandshttps://doi.org/10.1007/978-94-007-5479-9

  10. Sudhakar K et al (2018) An overview of marine macroalgae as bioresource. Renew Sustain Energy Rev. 91:165–179. https://doi.org/10.1016/j.rser.2018.03.100

    Article  Google Scholar 

  11. Milledge JJ, Harvey P (2018) Anaerobic digestion and gasification of seaweed. In Rampelotto PH, Trincone A (eds) Grand challenges in marine biotechnology. Springer International Publishing. https://doi.org/10.1007/978-3-319-69075-9_7

  12. Milledge JJ, Nielsen BV, Sadek MS, Harvey P (2018) Effect of freshwater washing pretreatment on Sargassum muticum as a feedstock for biogas production. Energies 11:1–14. https://doi.org/10.3390/en11071771

    Article  CAS  Google Scholar 

  13. Basu P (2010) Biomass gasification and pyrolysis. Elsevier, Oxford. https://doi.org/10.1016/C2009-0-20099-7

    Article  Google Scholar 

  14. Akhtar A, Krepl V, Ivanova T (2018) A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels 32:7294–7318. https://doi.org/10.1021/acs.energyfuels.8b01678

    Article  CAS  Google Scholar 

  15. Imran A, Bramer EA, Seshan K, Brem G (2018) An overview of catalysts in biomass pyrolysis for production of biofuels. Biofuel Res J 20:872-885 https://doi.org/10.18331/BRJ2018.5.4.2

  16. Díaz-Vázquez LM, Rojas-Pérez A, Fuentes-Caraballo M, Robles IV, Jena U, Das KC (2015) Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production. Front Energy Res 3:1–11. https://doi.org/10.3389/fenrg.2015.00006

    Article  Google Scholar 

  17. He Z, Saw WL, Lane DJ, Eyk PJ, Nys R, Nathan GJ et al (2020) The ash-quartz sand interaction behaviours during steam gasification or combustion of a freshwater and a marine species of macroalgae. Fuel 263:1–13. https://doi.org/10.1016/j.fuel.2019.116621

    Article  CAS  Google Scholar 

  18. Demirbas A, Demirbas MF (2010) Algae as a new source of biodiesel green energy and technology. Springer, London

    Google Scholar 

  19. Milledge JJ, Harvey P (2016) Golden tides: problem or golden opportunity? The valorisation of Sargassum from beach inundations. Review. J Mar Sci Eng 4:1–19. https://doi.org/10.3390/jmse4030060

    Article  Google Scholar 

  20. Hu C, Hardy R, Ruder E, Geggel A, Feng L, Powers S et al (2016) Sargassum coverage in the northeastern Gulf of Mexico during 2010 from Landsat and airborne observations: implications for the deepwater horizon oil spill impact assessment. Mar Pollut Bull 107:15–21. https://doi.org/10.1016/j.marpolbul.2016.04.045

    Article  CAS  PubMed  Google Scholar 

  21. Witherington B, Hirama S, Hardy R (2012) Young sea turtles of the pelagic Sargassum dominated drift community: habitat use, population density, and threats. Mar Ecol Prog Ser 463:1–22. https://doi.org/10.3354/meps09970

    Article  Google Scholar 

  22. Rooker JR, Turner JP, Holt SA (2006) Trophic ecology of Sargassum-associated fishes in the Gulf of Mexico determined from stable isotopes and fatty acids. Mar Ecol Prog Ser 313:249–259. https://doi.org/10.3354/meps313249

    Article  CAS  Google Scholar 

  23. Hu L, Hu C, He MX (2017) Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens Environ 192:217–227. https://doi.org/10.1016/j.rse.2017.01.037

    Article  Google Scholar 

  24. Hu L, Zeng K, Hu C, He MX (2019) On the remote estimation of Ulva prolifera areal coverage and biomass. Remote Sens Environ 223:194–207. https://doi.org/10.1016/j.rse.2019.01.014

    Article  Google Scholar 

  25. Moral A, Aguado R, Castelló R, Tijero A, Ballesteros M (2019) Potential use of green alga Ulva sp. for papermaking. BioResources 14:6851–6862 https://doi.org/10.15376/biores.14.3.6851-6862

  26. Franks JS, Johnson DR, Ko DS (2016) Pelagic Sargassum in the tropical North Atlantic. Gulf Caribb Res 27:6–11 https://doi.org/10.18785/gcr.2701.08

  27. Putman NF, Goni GJ, Gramer LJ, Hu C, Johns EM, Trinanes J et al (2018) Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea. Prog Oceanogr J 165:205–214. https://doi.org/10.1016/j.pocean.2018.06.009

    Article  Google Scholar 

  28. Casas-Valdez M, Hernández-Contreras H, Marín-Álvarez A, Aguila-Ramírez RN, Hernández-Guerrero CJ, Sánchez-Rodríguez I, et al. (2006) El alga marina Sargassum (Sargassaceae): una alternativa tropical para la alimentación de ganado caprino. Rev Biol Trop 1:83-92 https://doi.org/10.15517/rbt.v54i1.14002

  29. Cabanillas-Terán N, Hernández-Arana HA, Ruiz-Zárate MA, Vega-Zepeda A, Sanchez-Gonzalez A (2019) Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7:1–32 https://doi.org/10.7717/peerj.7589

  30. Rodríguez-Martínez RE, Ruíz-Rentería F, Tussenbroek B, Barba-Santos G, Escalante-Mancera E, Jordán-Garza G et al (2010) Environmental state and tendencies of the Puerto Morelos CARICOMP site, Mexico. Rev Biol Trop 58:23–43

    PubMed  Google Scholar 

  31. Lapointe BE, West LE, Sutton TT, Hu C (2014) Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J Exp Mar Biol Ecol 458:46–56. https://doi.org/10.1016/j/jembe.2014.05.002

    Article  CAS  Google Scholar 

  32. Shadle S, Lestrade O, Elmer F, Hernandez Jr F (2019) Estimation and comparison of epiphyte loading on holopelagic Sargassum fluitans collected in the North Atlantic Ocean and the Gulf of Mexico. Gulf Caribb Res 30:42–49 https://doi.org/10.18785/gcr.3001.16

  33. Brooks MT, Coles VJ, Hood RR, Gower J (2018) Factors controlling the seasonal distribution of pelagic Sargassum. Mar Ecol Prog Ser 599:1–18. https://doi.org/10.3354/meps12646

    Article  Google Scholar 

  34. Gower J, Young E, King S (2013) Satellite images suggest a new Sargassum source region in 2011. Remote Sens Lett 4:764–773. https://doi.org/10.1080/2150704X.2013.796433

    Article  Google Scholar 

  35. Maurer AS, De Neef E, Stapleton S (2015) Sargassum accumulation may spell trouble for nesting sea turtles. Front Ecol Environ 13:394–395. https://doi.org/10.1890/1540-9295-13.7.394

    Article  Google Scholar 

  36. Moreira A, Alfonso G (2013) Inusual arribazón de Sargassum fluitans (Børgesen) Børgesen en la costa centro-sur de Cuba. Rev Investig Mar 33:17–20

  37. Marechal JP, Hellio C, Hu C (2017) A simple, fast, and reliable method to predict Sargassum washing ashore in the Lesser Antilles. Remote Sens Appl Soc Environ 5:54–63. https://doi.org/10.1016/j.rsase.2017.01.001

    Article  Google Scholar 

  38. Wang M, Hu C (2016) Mapping and quantifying Sargassum distribution and coverage in the Central West Atlantic using MODIS observations. Remote Sens Environ 183:350–367. https://doi.org/10.1016/j.rse.2016.04.019

    Article  Google Scholar 

  39. Sabour B, Reani A, Magouri H, Haroun R (2013) Sargassum muticum (Yendo) Fensholt (Fucales, Phaeophyta) in Morocco, an invasive marine species new to the Atlantic coast of Africa. Aquat Invasions 8:97–102. https://doi.org/10.3391/ai.2013.8.1.11

    Article  Google Scholar 

  40. Critchley AT, Farnham WF, Morrell SL (1983) A chronology of new European sites of attachment for the invasive brown alga, Sargassum muticum, 1973–1981. J Mar Biol Assoc UK 63:799–811. https://doi.org/10.1017/S0025315400071228

    Article  Google Scholar 

  41. Milledge JJ, Nielsen BV, Bailey D (2015) High-value products from macroalgae: the potential uses of the invasive brown seaweed, Sargassum muticum. Rev Environ Sci Biotechnol 15:1–23. https://doi.org/10.1007/s11157-015-9381-7

    Article  CAS  Google Scholar 

  42. Sahayaraj K, Jeeva YM (2012) Nymphicidal and ovipositional efficacy of seaweed Sargassum tenerrimum (J. agardh) against Dysdercus cingulatus (fab.) (pyrrhocoridae). Chil J Agric Res 72:152–157. https://doi.org/10.4067/S0718-58392012000100024

    Article  Google Scholar 

  43. Li J, Qiao Y, Chen X, Zong P, Qin S, Wu Y et al (2019) Steam gasification of land, coastal zone and marine biomass by thermal gravimetric analyzer and a free-fall tubular gasifier: biochars reactivity and hydrogen-rich syngas production. Bioresour Technol 289:1–9. https://doi.org/10.1016/j.biortech.2019.121495

    Article  CAS  Google Scholar 

  44. Li J, Zhu Y, Wang C, Wei W, Liu Z, Tian Y et al (2020) Golden seaweed tides from beach inundations as a valuable sustainable fuel resource: fast pyrolysis characteristics, product distribution and pathway study on Sargassum horneri based on model compounds. Algal Res 48:1–11. https://doi.org/10.1016/j.algal.2020.101888

    Article  Google Scholar 

  45. Kaewpanha M, Guan G, Hao X, Wang Z, Kasai Y, Kusakabe K et al (2014) Steam co-gasification of brown seaweed and land-based biomass. Fuel Process Technol 120:106–112. https://doi.org/10.1016/j.fuproc.2013.12.013

    Article  CAS  Google Scholar 

  46. Wang S, Jiang XM, Han XX, Liu JG (2009) Combustion characteristics of Enteromorpha clathrata and Sargassum natans. Energy Fuels 23:5173–5178. https://doi.org/10.1021/ef900414x

    Article  CAS  Google Scholar 

  47. Torres-Conde EG, Martínez-Darana B (2020) Oceanographic and spatio-temporal analysis of pelagic Sargassum drifts in Playas del Este, La Habana, Cuba. Rev Investig Mar 40:47–66

  48. Moreira A, Cabrera R, Suárez AM (2006) Evaluación de macroalgas marinas del género Sargassum C. Agardh (Phaeophyta, Fucales). Rev Investig Mar 27:115–120

  49. Schell JM, Goodwin DS, Siuda AN (2015) Recent Sargassum inundation events in the Caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28:8–10

    Article  Google Scholar 

  50. Wang M, Hu C (2017) Predicting Sargassum blooms in the Caribbean Sea from MODIS observations. Geophys Res Lett 44:3265–3273. https://doi.org/10.1002/2017GL072932

    Article  Google Scholar 

  51. Wang M, Hu C, Barnes BB, Mitchum G, Lapointe B, Montoya JP (2019) The great Atlantic Sargassum belt. Science 365:83–87. https://doi.org/10.1126/science.aaw7912

    Article  CAS  PubMed  Google Scholar 

  52. Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88. https://doi.org/10.1038/nature12860

    Article  CAS  PubMed  Google Scholar 

  53. Wang M, Hu C, Cannizzaro J, English D, Han X, Naar D et al (2018) Remote sensing of Sargassum biomass, nutrients, and pigments. Geophys Res Lett 45:12359–12367. https://doi.org/10.1029/2018GL078858

    Article  Google Scholar 

  54. Sissini MN, et. (2017) The floating Sargassum (Phaeophyceae) of the South Atlantic Ocean-likely scenarios. Phycologia 56:321–328. https://doi.org/10.2216/16-92.1

    Article  Google Scholar 

  55. Johns EM, Lumpkin R, Putman NF, Smith RH, Muller-Karger FE, Rueda-Roa DT et al (2020) The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog Oceanogr 182:1–26. https://doi.org/10.1016/j.pocean.2020.102269

    Article  Google Scholar 

  56. Ye NH, Zhang XW, Mao YZ, Liang CW, Xu D, Zou J et al (2011) Green tides are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26:477–485. https://doi.org/10.1007/s11284-011-0821-8

    Article  Google Scholar 

  57. Sweatman JL, Layman CA, Fourqurean JW (2017) Habitat fragmentation has some impacts on aspects of ecosystem functioning in a sub-tropical seagrass bed. Mar Environ Res 126:95–108. https://doi.org/10.1016/j.marenvres.2017.02.003

    Article  CAS  PubMed  Google Scholar 

  58. Rodríguez-Martínez RE, Medina-Valmaseda AE, Blanchon P, Monroy-Velázquez LV, Almazán-Becerril A, Delgado-Pech P et al (2019) Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar Pollut Bull 146:201–205. https://doi.org/10.1016/j.marpolbul.2019.06.015

    Article  CAS  PubMed  Google Scholar 

  59. Oyesiku OO, Egunyomi A (2014) Identification and chemical studies of pelagic masses of Sargassum natans (Linnaeus) Gaillon and S. fluitans (Borgessen) Borgesen (brown algae), found offshore in Ondo State, Nigeria. Afr J Biotechnol 13:1188–1193. https://doi.org/10.5897/AJB2013.12335

    Article  CAS  Google Scholar 

  60. Milledge JJ, Maneein S, Arribas-López E, Bartlett D (2020) Sargassum inundations in Turks and Caicos: methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies 13:1–27. https://doi.org/10.3390/en13061523

    Article  CAS  Google Scholar 

  61. Kositkanawuth K, Bhatt A, Sattler M, Dennis B (2017) Renewable energy from waste: investigation of co-pyrolysis between Sargassum macroalgae and polystyrene. Energy Fuels 31:5088–5096. https://doi.org/10.1021/acs.energyfuels.6b03397

    Article  CAS  Google Scholar 

  62. Pfeil M, Piloto-Rodríguez R, Díaz Y, Sánchez-Borroto Y, Melo-Espinosa EA, Denfeld D et al (2020) Data on the thermochemical potential of six Cuban biomasses as bioenergy sources. Data Brief 29:1–7. https://doi.org/10.1016/j.dib.2020.105207

    Article  Google Scholar 

  63. Paraguay-Delgado F, Carreño-Gallardo C, Estrada-Guel I, Zabala-Arceo A, Martinez-Rodriguez HA, Lardizábal-Gutierrez D (2020) Pelagic Sargassum spp. capture CO2 and produce calcite. Environ Sci Pollut Res 1007/s11356-020-08969-w

  64. Solarin BB, Bolaji DA, Fakayode OS, Akinnigbagbe RO (2014) Impacts of an invasive seaweed Sargassum hystrix var. fluitans (Børgesen 1914) on the fisheries and other economic implications for the Nigerian coastal waters. J Agric Vet Sci 7:1–6. https://doi.org/10.9790/2380-07710106

    Article  Google Scholar 

  65. Milledge JJ, Staple A, Harvey P (2015) Slow pyrolysis as a method for the destruction of japanese wireweed, Sargassum muticum. Environ Nat Resour Res 5:28–38. https://doi.org/10.5539/enrr.v5n1p28

    Article  Google Scholar 

  66. Sun J, Zhao B, Su Y (2019) Advanced control of NO emission from algal biomass combustion using loaded iron-based additives. Energy 185:229–238. https://doi.org/10.1016/j.energy.2019.07.042

    Article  CAS  Google Scholar 

  67. Widowati I, Suprijanto J, Trianto A, Puspita M, Bedoux G, Bourgougnon N (2019) Antibacterial activity and proximate analysis of Sargassum extracts as cosmetic additives in a moisturizer cream. AACL Bioflux 12:1961–1971

    Google Scholar 

  68. Ali I, Bahadar A (2017) Red Sea seaweed (Sargassum spp.) pyrolysis and its devolatilization kinetics. Algal Res 21:89–97. https://doi.org/10.1016/j.algal.2016.11.011

    Article  Google Scholar 

  69. Thompson TM, Young BR, Baroutian S (2020) Pelagic Sargassum for energy and fertilizer production in the Caribbean: A case study on Barbados. Renew Sustain Energy Rev 118:1–12. https://doi.org/10.1016/j.rser.2019.109564

    Article  CAS  Google Scholar 

  70. Biswas B, Singh R, Krishna BB, Kumar J, Bhaskar T (2017) Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresour Technol 242:139–145. https://doi.org/10.1016/j.biortech.2017.03.044

    Article  CAS  PubMed  Google Scholar 

  71. Biswas B, Fernandes AC, Kumar J, Muraleedharan UD (2018) Valorization of Sargassum tenerrimum: Value addition using hydrothermal liquefaction. Fuel 222:394–401. https://doi.org/10.1016/j.fuel.2018.02.153

    Article  CAS  Google Scholar 

  72. Kumar A, Kumar J, Bhaskar T (2020) High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. Environ Res 186:109533. https://doi.org/10.1016/j.envres.2020.109533

  73. He S, Zhao M, Wang J, Cheng Z, Yan B, Chen G (2019) Hydrothermal liquefaction of low-lipid algae Nannochloropsis sLi D, Chen L, Yi X, Zhang X, Ye N (2010) Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol 101:7131–7136. https://doi.org/10.1016/j.biortech.2010.03.145

    Article  CAS  Google Scholar 

  74. Li D, Chen S, Zhang X, Chen F, Ye N (2012) Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel 96:185–191. https://doi.org/10.1016/j.fuel.2012.01.005

    Article  CAS  Google Scholar 

  75. Kim SS, Ly HV, Kim J, Choi JH, Woo HC (2013) Thermogravimetric characteristics and pyrolysis kinetics of alga Sargassum sp. biomass. Bioresour Technol 139:242–248. https://doi.org/10.1016/j.biortech.2013.03.192

  76. He S, Zhao M, Wang J, Cheng Z, Yan B, Chen G (2020) Hydrothermal liquefaction of low-lipid algae Nannochloropsis sp. and Sargassum sp.: Effect of feedstock composition and temperature. Sci T Otal Environ 712:135677. https://doi.org/10.1016/j.scitotenv.2019.135677

  77. Liang S, Guo F, Du S, Tian B, Dong Y, Jia X (2020) Synthesis of Sargassum char-supported Ni-Fe nanoparticles and its application in tar cracking during biomass pyrolysis. Fuel 275:1–11. https://doi.org/10.1016/j.fuel.2020.117923

    Article  CAS  Google Scholar 

  78. Wei Y, Tang JT, Li JB (2019) The characteristics of products from pyrolysis of seaweed in molten carbonates. Am Soc Agric Biol Eng 62:787–794. https://doi.org/10.13031/trans.13303

  79. Yang W, Liu Z, Xu W, Liu Y (2018) Removal of elemental mercury from fuel gas using Sargassum chars modified by NH4Br reagent. Fuel 214:196–206. https://doi.org/10.1016/j.fuel.2017.11.004

    Article  CAS  Google Scholar 

  80. Wang S, Wang Q, Hu YM, Xu SN, He ZX, Ji HS (2015) Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique. J Anal Appl Pyrolysis 114:109–118. https://doi.org/10.1016/j.jaap.2015.05.008

    Article  CAS  Google Scholar 

  81. Li D, Chen L, Xu D, Zhang X, Ye N, Chen F et al (2012) Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh. Bioresour Technol 104:737–742. https://doi.org/10.1016/j.biortech.2011.11.011

    Article  CAS  PubMed  Google Scholar 

  82. Taghavi S, Norouzi O, Tavasoli A, Di Maria F, Signoretto M, Menegazzo F et al (2018) Catalytic conversion of Venice lagoon brown marine algae for producing hydrogen-rich gas and valuable biochemical using algal biochar and Ni/SBA-15 catalyst. Natl J Hydrog Energy 43:19918–19929. https://doi.org/10.1016/j.ijhydene.2018.09.028

    Article  CAS  Google Scholar 

  83. Zhao B, Su Y, Liu D, Zhang H, Liu W, Cui G (2016) SO2/NOx emissions and ash formation from algae biomass combustion: Process characteristics and mechanisms. Energy 113:821–830. https://doi.org/10.1016/j.energy.2016.07.107

    Article  CAS  Google Scholar 

  84. Fudholi A, Sopian K, Othman MY, Ruslan MH (2014) Energy and exergy analyses of solar drying system of red seaweed. Energy Build 68:121–129. https://doi.org/10.1016/j.enbuild.2013.07.072

    Article  Google Scholar 

  85. Kumari P, Bijo AJ, Mantri VA, Reddy CRK, Jha B (2013) Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemisty 86:44–56. https://doi.org/10.1016/j.phytochem.2012.10.015

    Article  CAS  Google Scholar 

  86. Arun J, Panchamoorthy K, SundarRajan P, Shyam S, Mayuri N, Sivaramakrishna R, et al (2021) Upgradation of Nostoc punctriforme under subcritical conditions into liquid hydrocarbons (bio-oil) via hydro-deoxygenation: Optimization and engine tests. J Environ Chem Eng 9:105230 https://doi.org/10.1016/j.jece.2021.105230

  87. Mahima J, Kumar R, Panchamoorthy K, Sundar PS, Arun J, Kim SH et al (2021) Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies. Sci Total Environ 778:146262. https://doi.org/10.1016/j.scitotenv.2021.146262

  88. Sundar PS, Panchamoorthy K, Arun J, Grace K, Pavendan K, AdithyaJoseph A (2020) An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass. Renew Energy 151:79–87. https://doi.org/10.1016/j.renene.2019.11.011

    Article  CAS  Google Scholar 

  89. Abbas T, Issa M, Ilinca A (2020) Biomass cogeneration technologies: A Review. J Sustain Bioenergy Syst 10:1–15. https://doi.org/10.4236/jsbs.2020.101001

    Article  CAS  Google Scholar 

  90. Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378. https://doi.org/10.1016/S0196-8904(00)00137-0

    Article  CAS  Google Scholar 

  91. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S et al (2011) Bioenergy potential of ulva lactuca: Biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604. https://doi.org/10.1016/j.biortech.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  92. Smith AM, Ross AB (2016) Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res 16:1–11. https://doi.org/10.1016/j.algal.2016.02.026

    Article  Google Scholar 

  93. Zhao B, Su Y (2019) Emission and conversion of NO from algal biomass combustion in O2/CO2 atmosphere. J Environ Manage 250:1–8. https://doi.org/10.1016/j.jenvman.2019.109419

    Article  CAS  Google Scholar 

  94. Gopirajan PV, Gopinath KP, Sivaranjani G, Arun J (2021) Optimization of hydrothermal gasification process through machine learning approach: Experimental conditions, product yield and pollution. J Clean Prod 306:127302. https://doi.org/10.1016/j.jclepro.2021.127302

  95. Pattar NK, Gowreesh SS (2017) Tar formation, reduction and technology of tar during biomass gasification/pyrolysis-an overview. Int J Eng Res Technol IJERT 6:62–70. https://doi.org/10.17577/IJERTV6IS080047

  96. Valderrama Rios ML, Martínez A, Silva EE, Almazán OA (2018) Reduction of tar generated during biomass gasification: A review. Biomass Bioenergy 108:345–370. https://doi.org/10.1016/j.biombioe.2017.12.002

    Article  CAS  Google Scholar 

  97. Dry ME (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  98. Adnan MA, Xiong Q, Hidayat A, Hossain MM (2019) Gasification performance of Spirulina microalgae-A thermodynamic study with tar formation. Fuel 241:372–381. https://doi.org/10.1016/j.fuel.2018.12.061

    Article  CAS  Google Scholar 

  99. Nurdiawati A, Zaini IN, Irhamma AR, Sasongko D, Aziz M (2019) Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae. Renew Sustain Energy Rev 112:369–381. https://doi.org/10.1016/j.rser.2019.05.054

    Article  CAS  Google Scholar 

  100. Nurcahyani PR, Hashimoto S, Matsumura Y (2020) Supercritical water gasification of microalgae with and without oil extraction. J Supercrit Fluids 165:1–6. https://doi.org/10.1016/j.supflu.2020.104936

    Article  CAS  Google Scholar 

  101. Norouzi O, Safari F, Jafarian S, Tavasoli A, Karimi A (2017) Hydrothermal gasification performance of Enteromorpha intestinalisas as an algal biomass for hydrogen-rich gas production using Ru promoted Fe–Ni/c-Al2O3 nanocatalysts. Energy Convers Manag 141:63–71. https://doi.org/10.1016/j.enconman.2016.04.083

    Article  CAS  Google Scholar 

  102. Ebadi AG, Hisoriev H (2017) Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2 in a circulating fluidized bed. Environ Technol 40:1–21. https://doi.org/10.1080/09593330.2017.1406538

    Article  CAS  Google Scholar 

  103. Zaini IN, Nurdiawati A, Aziz M (2017) Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae. Appl Energy 207:134–145. https://doi.org/10.1016/j.apenergy.2017.06.071

  104. Lane DJ, Truong E, Larizza F, De Nys R, Eyk PJ (2018) Effect of hydrothermal carbonisation on the combustion and gasification behaviour of agricultural residues and macroalgae: devolatilisation characteristics and char reactivity. Energy Fuels 32:4149–4159. https://doi.org/10.1021/acs.energyfuels.7b03125

    Article  CAS  Google Scholar 

  105. Guo P, Saw WL, Eyk PJ, Stechel EB, De Nys R, Ashman PJ et al (2017) Gasification reactivity and physicochemical properties of the chars from raw and torrefied wood, grape marc, and macroalgae. Energy Fuels 31:2246–2259. https://doi.org/10.1021/acs.energyfuels.6b02215

    Article  CAS  Google Scholar 

  106. Guan QQ, Wei CH, Savage PE (2012) Kinetic model for supercritical water gasification of algae. Phys Chem Chem Phys 14:3140–3147. https://doi.org/10.1039/C2CP23792J

    Article  CAS  PubMed  Google Scholar 

  107. Pandey B, Prajapati YK, Sheth PN (2019) Recent progress in thermochemical techniques to produce hydrogen gas from biomass: A state of the art review. Int J Hydrog Energy 44:25384–25415. https://doi.org/10.1016/j.ijhydene.2019.08.031

    Article  CAS  Google Scholar 

  108. Cherad R, Onwudili JA, Ekpo U, Williams PT, Lea-Langton AR, Carmargo-Valero M et al (2013) Macroalgae supercritical water gasification combined with nutrient recycling for micralgae cultivation. Environ Prog Sustain Energy 32:902–910. https://doi.org/10.1002/ep.11814

    Article  CAS  Google Scholar 

  109. Sinag A, Schumacher M, Yanik J, Kruse A (2011) Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids 58:131–135. https://doi.org/10.1016/j.biortech.2012.10.020

    Article  CAS  Google Scholar 

  110. Onwudili JA, Lea-Langton AR, Ross AB, Williams PT (2013) Catalytic hydrothermal gasification of algae for hydrogen production: Composition of reaction products and potential for nutrient recycling. Bioresour Technol 127:72–80. https://doi.org/10.1016/j.biortech.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  111. Alvarez-Chávez BJ, Godbout S, Roux EL, Palacios JH, Raghavan V (2019) Bio-oil yield and quality enhancement through fast pyrolysis and fractional condensation concepts. Biofuel Res J 24:1054–1064. https://doi.org/10.18331/BRJ2019.6.4.2

  112. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11. https://doi.org/10.1016/j.biortech.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  113. Lee XJ, Ong HC, Gan YY, Chen WH (2020) State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manag 210:1–34. https://doi.org/10.1016/j.enconman.2020.112707

    Article  CAS  Google Scholar 

  114. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481. https://doi.org/10.1016/j.rser.2015.10.122

    Article  CAS  Google Scholar 

  115. Yu J, Maliutina K, Tahmasebi A (2018) A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresour Technol 270:689–701. https://doi.org/10.1016/j.biortech.2018.08.127

    Article  CAS  PubMed  Google Scholar 

  116. Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H et al (2019) Pyrolysis of microalgae: A critical review. Fuel Process Technol 186:53–72. https://doi.org/10.1016/j.fuproc.2018.12.012

    Article  CAS  Google Scholar 

  117. Ahmed A, Abu Bakar MS, Azad AK, Sukri RS, Phusunti N (2018) Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers Manag 176:393–408. https://doi.org/10.1016/j.enconman.2018.09.041

    Article  CAS  Google Scholar 

  118. Wang S, Wang Q, Jiang XM, Han XX, Ji HS (2013) Compositional analysis of bio-oil derived from pyrolysis of seaweed. Energy Convers Manag 68:273–280. https://doi.org/10.1016/J.ENCONMAN.2013.01.014

    Article  CAS  Google Scholar 

  119. Roberts DA, Paul NA, Dworjanyn SA, Bird MI, Nya R (2015) Biochar from commercially cultivated seaweed for soil amelioration. Sci Rep 5:1–6. https://doi.org/10.1038/srep09665

    Article  CAS  Google Scholar 

  120. Poo KM, Son EB, Chang JS, Ren X, Choi YJ, Chae KJ (2018) Biochars derived from wasted marine macro-algae (Saccharina japonica and Sargassum fusiforme) and their potential for heavy metal removal in aqueous solution. J Environ Manage 206:364–372. https://doi.org/10.1016/j.jenvman.2017.10.056

    Article  CAS  PubMed  Google Scholar 

  121. Mong GR, Chong CT, Ashokkumar V, Ng JH, Chong WWF (2020) Determination of the activation energy and kinetics properties of algae (Sargassum polycystum) via thermogravimetric analysis. Chem Eng Trans 78:133–138. https://doi.org/10.3303/CET2078023

    Article  Google Scholar 

  122. Li R, Zhong Z, Jin B, Zheng A (2012) Selection of Temperature for Bio-oil Production from Pyrolysis of Algae from Lake Blooms. Energy Fuels 26:2996–3002. https://doi.org/10.1021/ef300180r

    Article  CAS  Google Scholar 

  123. Aboulkas A, Hammani H, El Achaby M, Bilal E, Barakat A, El Harfi K (2017) Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char. Bioresour Technol 243:400–408. https://doi.org/10.1016/j.biortech.2017.06.098

    Article  CAS  PubMed  Google Scholar 

  124. Trinh TN, Jensen PA, Dam-Johansen K, Knudsen NO, Sørensen HR, Hvilsted S (2013) Comparison of Lignin, Macroalgae, Wood, and Straw Fast Pyrolysis. Energy Fuels 27:1399–1409. https://doi.org/10.1021/ef301927y

    Article  CAS  Google Scholar 

  125. Chaiwong K, Kiatsiriroat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606. https://doi.org/10.1016/j.biombioe.2013.05.035

    Article  CAS  Google Scholar 

  126. Hu Z, Zheng Y, Yan F, Xiao B, Liu S (2013) Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization. Energy 52:119–125. https://doi.org/10.1016/j.energy.2013.01.059

    Article  CAS  Google Scholar 

  127. Yanik J, Stahl R, Troeger N, Sinag A (2013) Pyrolysis of algal biomass. J Anal Appl Pyrolysis 103:134–141. https://doi.org/10.1016/j.jaap.2012.08.016

    Article  CAS  Google Scholar 

  128. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504. https://doi.org/10.1016/j.biortech.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  129. Shakirullah M, Ahmad I, Rehman H, Ishaq M, Khan U, Ullah H (2006) Effective chemical leaching and ash depletion of low rank coal with EDTA and citric acid. J- Chem Soc Pak 28:56–61

    CAS  Google Scholar 

  130. Ross AB, Anastasakis K, Kubacki ML, Jones JM (2009) Investigation of the pyrolysis behaviour of brown algae before and after pre-treatment using PY-GC/MS and TGA. J Anal Appl Pyrolysis 85:3–10. https://doi.org/10.1016/j.jaap.2008.11.004

    Article  CAS  Google Scholar 

  131. Gollakota ARK, Kishore N, Gu S (2018) A review on hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 81:1378–1392. https://doi.org/10.1016/j.rser.2017.05.178

    Article  Google Scholar 

  132. Tian C, Li B, Liu Z, Zhang Y, Lu H (2014) Hydrothermal liquefaction for algal biorefinery: A critical review. Renew Sustain Energy Rev 38:933–950. https://doi.org/10.1016/j.rser.2014.07.030

    Article  CAS  Google Scholar 

  133. Kumar M, Oyedun AO, Kumar A (2018) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energy Rev 81:1742–1770. https://doi.org/10.1016/j.rser.2017.05.270

    Article  Google Scholar 

  134. Galadima A, Muraza O (2018) Hydrothermal liquefaction of algae and bio-oil upgrading into liquid fuels: Role of heterogeneous catalysts. Renew Sustain Energy Rev 81:1037–1048. https://doi.org/10.1016/j.rser.2017.07.034

    Article  CAS  Google Scholar 

  135. Raikova S, Allen MJ, Chuck CJ (2019) Hydrothermal liquefaction of macroalgae for the production of renewable biofuels. Review Biofuels Bioprod Biorefining 13:1483–1504. https://doi.org/10.1002/bbb.2047

    Article  CAS  Google Scholar 

  136. Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB (2015) Hydrothermal liquefaction of biomass: developments from batch to continuous process. Bioresour Technol 178:147–156. https://doi.org/10.1016/j.biortech.2014.09.132

    Article  CAS  PubMed  Google Scholar 

  137. Neveux N, Magnusson M, Maschmeyer T, De Nys R, Paul NA (2015) Comparing the potential production and value ofhigh-energy liquid fuels and protein from marine and freshwater macroalgae. Bioenergy 7:673–689. https://doi.org/10.1111/gcbb.12171

    Article  CAS  Google Scholar 

  138. Parsa M, Jalilzadeh H, Pazoki M, Ghasemzadeh R, Abduli MA (2018) Hydrothermal Liquefaction of Gracilaria gracilis and Cladophora glomerata macro-algae for biocrude production. Bioresour Technol 250:26–34. https://doi.org/10.1016/j.biortech.2017.10.059

    Article  CAS  PubMed  Google Scholar 

  139. Patel B, Guo M, Izadpanah A, Shah N, Hellgardt K (2016) A Review on hydrothermal pre-treatment technologies and environmental profiles of algal biomass processing. Bioresour Technol 199:288–299. https://doi.org/10.1016/j.biortech.2015.09.064

    Article  CAS  PubMed  Google Scholar 

  140. Yan L, Wang Y, Li J, Zhang Y, Ma L, Fu F et al (2019) Hydrothermal liquefaction of Ulva prolifera macroalgae and the influence of base catalysts on products. Bioresour Technol 292:1–7. https://doi.org/10.1016/j.biortech.2019.03.125

    Article  CAS  Google Scholar 

  141. Zeb H, Riaz A, Kim J (2017) Understanding the effect of biomass-to-solvent ratio on macroalgae (Saccharina Japonica) liquefaction in supercritical ethanol. Supercrit Fluids 120:65–74. https://doi.org/10.1016/j.supflu.2016.10.013

    Article  CAS  Google Scholar 

  142. Ma C, Gen J, Zhang D, Ning X (2020) Hydrothermal liquefaction of macroalgae: Influence of zeolites based catalyst on products. J Energy Inst 93:581–590. https://doi.org/10.1016/j.joei.2019.06.007

    Article  CAS  Google Scholar 

  143. Duan G, Yang SK, Xu YP, Wang F, Zhao D, Weng YJ et al (2018) Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 155:734–745. https://doi.org/10.1016/j.energy.2018.05.044

    Article  CAS  Google Scholar 

  144. Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to biooil. Energy Fuels 24:4054–4061. https://doi.org/10.1021/ef100151h

    Article  CAS  Google Scholar 

  145. Bach QV, Sillero MV, Tran KQ, Skjermo J (2014) Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests. Algal Res 6:271–276. https://doi.org/10.1016/j.algal.2014.05.009

    Article  Google Scholar 

  146. Niaz H, Brigljevic B, Park YB, Woo HC, Liu JJ (2020) Comprehensive feasibility assessment of combined heat, hydrogen, and power production via hydrothermal liquefaction of Saccharina japonica. CS Sustain Chem Eng 8:8305–8317. https://doi.org/10.1021/acssuschemeng.0c01951

    Article  CAS  Google Scholar 

  147. Latif SA, Ong MY, Nomanbhay S (2019) Hydrothermal liquefaction of Malaysia’s algal biomass for high-quality bio-oil production. Eng Life Sci 19:246–269. https://doi.org/10.1002/elsc.201800144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Anastasakis K, Ross AB (2015) Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel 139:546–553. https://doi.org/10.1016/j.fuel.2014.09.006

    Article  CAS  Google Scholar 

  149. Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: Effect of reaction conditions on product distribution and composition. Bioresour Technol 102:4876–4883. https://doi.org/10.1016/j.biortech.2011.01.031

    Article  CAS  PubMed  Google Scholar 

  150. Rahbari H, Akram A, Pazoki M, Aghbashlo M (2019) Bio-Oil production from Sargassum macroalgae: A green and healthy source of energy. Jundishapur J Health Sci 11:e84301.https://doi.org/10.5812/jjhs.84301

  151. Biswas B, Kumar A, Bisht Y, Singh R, Kumar J, Bhaskar T (2017) Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae. Bioresour Technol 242:344–350. https://doi.org/10.1016/j.biortech.2017.03.045

    Article  CAS  PubMed  Google Scholar 

  152. Biswas B, Kumar A, Fernandes AC, Saini K, Negi S, Muraleedharan UD et al (2020) Solid base catalytic hydrothermal liquefaction of macroalgae: Effects of process parameter on product yield and characterization. Bioresour Technol 307:1–7. https://doi.org/10.1016/j.biortech.2020.123232

    Article  CAS  Google Scholar 

  153. Raikova S, Le CD, Beacham TA, Jenkins RW, Allen MJ, Chuck CJ (2017) Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom. Biomass Bioenergy 107:244–253. https://doi.org/10.1016/j.biombioe.2017.10.010

    Article  CAS  Google Scholar 

  154. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy 36:2328–2342. https://doi.org/10.1016/j.energy.2011.03.013

    Article  CAS  Google Scholar 

  155. Belkheiri T, Andersson SI, Mattsson C, Olausson L, Theliander H, Vamling L (2018) Hydrothermal liquefaction of Kraft Lignin in subcritical water: Influence of phenol as capping agent. Energy Fuels 32:5923–5932. https://doi.org/10.1021/acs.energyfuels.8b00068

    Article  CAS  Google Scholar 

  156. Guo Y, Song W, Lu J, Ma Q, Xu D, Wang S (2015) Hydrothermal liquefaction of Cyanophyta: evaluation of potential biocrude oil production and component analysis. Algal Res 11:242–247. https://doi.org/10.1016/j.algal.2015.06.025

    Article  Google Scholar 

  157. Hietala DC, Faeth JL, Savage PE (2016) A quantitative kinetic model for the fast and isothermal hydrothermal liquefaction of Nannochloropsis sp. Bioresour Technol 214:102–111. https://doi.org/10.1016/j.biortech.2016.04.067

    Article  CAS  PubMed  Google Scholar 

  158. Xu D, Savage P (2015) Effect of reaction time and algae loading on water-soluble and insoluble biocrude fractions from hydrothermal liquefaction of algae. Algal Res 12:60–67. https://doi.org/10.1016/j.algal.2015.08.005

    Article  Google Scholar 

  159. Rodríguez-Martínez RE, Van Tussenbroek BI, Jordán-Dahlgren E (2016) Afluencia masiva de sargazo pelágico a la costa del Caribe mexicano (2014-2015). In: Florecimientos Algales Nocivos en México. Baja California, Mexico: CICESE 2016: 352–365

  160. Monroy-Velázquez LV, Rodríguez-Martínez RE, Van Tussenbroek BI, Aguiar T, Solís-Weiss V, Briones-Fourzán P (2019) Motile macrofauna associated with pelagic Sargassum in a mexican reef lagoon. J Environ Manage 252:1–10. https://doi.org/10.1016/j.jenvman.2019.109650

    Article  Google Scholar 

  161. Davison DM (2009) Sargassum muticum in Scotland 2008: a review of information, issues and implications. Scottish Natural Heritage Commissioned Report No 324. https://tinyurl.com/ycjtqep3

  162. Bhatia L, Bachheti RK, Garlapati VK, Chandel AK (2020) Third-generation biorefineries: a sustainable platform for food, clean energy, and nutraceuticals production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00843-6

    Article  Google Scholar 

  163. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renew Sustain Energy Rev 31:35–51. https://doi.org/10.1016/j.rser.2012.11.069

    Article  CAS  Google Scholar 

  164. Dickson R, Brigljevic B, Lim H, Liu J (2020) Maximizing the sustainability of a macroalgae biorefinery: a superstructure optimization of a volatile fatty acid platform. Green Chem. https://doi.org/10.1039/d0gc00430h

    Article  Google Scholar 

  165. Kostas ET, Adams JMM, Ruiz HA, Durán-Jiménez G, Lye GJ (2021) Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives. Renew Sustain Energy Rev 151:111553. https://doi.org/10.1016/j.rser.2021.111553

  166. Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery-How to make sense? Renew Sustain Energy Rev 47:295–307. https://doi.org/10.1016/j.rser.2015.03.052

    Article  CAS  Google Scholar 

  167. Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae Biorefinery: Review on a Broad Spectrum of Downstream Processes and Products. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121964

    Article  PubMed  Google Scholar 

  168. Brigljević B, Fasahati P, Liu JJ (2018) Integrated Bio-refinery Utilizing Brown Macroalgae: Process Design, Simulation and Techno-economical Assessment. Comput Aided Chem Eng 44:337–342. https://doi.org/10.1016/B978-0-444-64241-7.50051-3

    Article  Google Scholar 

  169. Offei F, Mensah M, Kemausuor F, Thygesen A (2019) A biorefinery approach to bioethanol and bioelectricity coproduction from tropical seaweeds. J Appl Phycol 31:3899–3913. https://doi.org/10.1007/s10811-019-01887-6

    Article  CAS  Google Scholar 

  170. Del Río PG, Domínguez E, Domínguez VD, Romaní A, Domingues L, Garrote G (2019) Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy 141:728–735. https://doi.org/10.1016/j.renene.2019.03.083

    Article  CAS  Google Scholar 

  171. Del Río PG, Gullón B, Pérez-Pérez A, Romaní A, Garrote G (2021) Microwave hydrothermal processing of the invasive macroalgae Sargassum muticum within a green biorefinery scheme. Bioresour Technol. 340

  172. González-López N, Moure A, Domínguez H (2012) Hydrothermal fractionation of Sargassum muticum biomass. J Appl Phycol 24:1569–78. https://doi.org/10.1007/s10811-012-9817-1

    Article  CAS  Google Scholar 

  173. Balboa EM, Moure A, Domínguez H (2015) Valorization of Sargassum muticum Biomass according to the Biorefinery Concept. Mar Drugs 13:3745–3760. https://doi.org/10.3390/md13063745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pérez L, Conde E, Domínguez H (2014) Microwave hydrodiffusion and gravity processing of Sargassum muticum. Process Biochem 49:981–988. https://doi.org/10.1016/j.procbio.2014.02.020

    Article  CAS  Google Scholar 

  175. Suryanarayan S, Sailaja Nori S, Kumar S, Vadassery N, Balendiran S, Kumar S (2012) Process of production of renewable chemicals and biofuels from seaweeds. US20140273098A1. United States

  176. Smit AT, Huijgen JJ (2017) Improved biorefinery of brown macroalgae. NL2019949B1. Netherlands

  177. Aziz M, Oda T, Kashiwagi T (2014) Advanced energy harvesting from macroalgae innovative integration of drying, gasification and combined cycle. Energies 7:8217–8235. https://doi.org/10.3390/en7128217

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Piloto-Rodríguez.

Ethics declarations

Ethics Approval

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobío-Pérez, I., Alfonso-Cardero, A., Díaz-Domínguez, Y. et al. Thermochemical Conversion of Sargassum for Energy Production: a Comprehensive Review. Bioenerg. Res. 15, 1872–1893 (2022). https://doi.org/10.1007/s12155-021-10382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10382-1

Keywords

Navigation