Skip to main content

Computer-Aided Exergy Evaluation of Hydrothermal Liquefaction for Biocrude Production from Nannochloropsis sp.

Abstract

Biomass (especially algae) is a renewable energy source that can be a great alternative to fossil fuels. Wet algal biomass converts into products such as solid, aqueous, and gaseous phases as well as biocrude in hydrothermal liquefaction (HTL). The aim of this work was to provide detailed exergy analyses of the production of biocrude from Nannochloropsis sp. by HTL. Physical and chemical exergy of the HTL products, exergy losses, exergy efficiency, and exergy distribution of the HTL process were determined in this research. The highest exergy loss and the lowest efficiency values obtained for the heat exchanger were 65,856.83 MJ/hr and 66.64%, respectively, which was mainly caused by the irreversibility of the heat transfer process. Moreover, the HTL reactor had high efficiency (99.9%) due to the complex reactions that occurred at high temperature and pressure. Also, the optimum operating conditions of the reactor were obtained at 350 °C and 20 MPa by using sensitivity analysis. The high overall exergy efficiency of the process (94.93%) indicated that HTL was the most effective process for the conversion of algae. In addition, the exergy recovery values of the overall exergy input values in the HTL process for biocrude, as well as the aqueous, solid, and gas phases, were nearly 74.88%, 18.42%, 0.86%, and 0.76%, respectively. Exergy assessment provides beneficial information for improving the thermodynamic performance of the HTL system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The data are available from the corresponding author upon request.

Abbreviations

%AAD:

Percent of average absolute deviation

AQU:

Aqueous phase

Ex:

Exergy rate (kJ/hr)

ex:

Molar exergy (kJ/mol)

g:

Gibbs energy (kJ/mol)

H:

Enthalpy (kJ/hr)

HEX:

Heat exchanger

HTL:

Hydrothermal liquefaction

HTR-R:

HTL reactor

LHV:

Lower heating value (MJ/kg)

n:

Mole flow rate (mol/hr)

m:

Mass flow rate (kg/hr)

P:

Pump

R:

Gas constant (kJ/mol. K)

S:

Entropy (kJ/hr k)

S-Sep.:

Solid separator

T:

Temperature (K)

V:

Valve

W:

Work rate (kJ/hr)

x:

Mole fraction (-)

3-Sep.:

Three-phase separator

β:

Exergy coefficient (-)

ɳ:

Exergy efficiency (-)

v:

Stoichiometric coefficient

ph:

Physical

0:

Standard state

Chem:

Chemical

f:

Formation

In:

Input

i, j:

Numerator

Loss:

Loss of exergy

Output:

Output

Q:

Heat transfer

0:

Reference state

References

  1. 1.

    Sudasinghe N, Dungan B, Lammers P et al (2014) High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina. Fuel 119:47–56. https://doi.org/10.1016/j.fuel.2013.11.019

    CAS  Article  Google Scholar 

  2. 2.

    Jin M, Oh YK, Chang YK, Choi M (2017) Optimum utilization of biochemical components in Chlorella sp. KR1 via subcritical hydrothermal liquefaction. ACS Sustain Chem Eng 5(8):7240–7248. https://doi.org/10.1021/acssuschemeng.7b01473

    CAS  Article  Google Scholar 

  3. 3.

    Changi SM, Faeth JL, Mo N, Savage PE (2015) Hydrothermal reactions of biomolecules relevant for microalgae liquefaction. Ind Eng Chem Res 54(47):11733–11758. https://doi.org/10.1021/acs.iecr.5b02771

    CAS  Article  Google Scholar 

  4. 4.

    Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597. https://doi.org/10.1016/j.rser.2009.10.003

    CAS  Article  Google Scholar 

  5. 5.

    Mahmood R, Parshetti GK, Balasubramanian R (2016) Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy 102:187–198. https://doi.org/10.1016/j.energy.2016.02.042

    CAS  Article  Google Scholar 

  6. 6.

    Rincon B, Altamar M, Castilla E et al (2018) Evaluation of hydrothermal liquefaction of Chlorella sp. for biocrude production using computer-aided exergy analysis. Contemp Eng Sci 11:1359–1366. https://doi.org/10.12988/ces.2018.7993

    CAS  Article  Google Scholar 

  7. 7.

    Moreno-Sader K, Meramo-Hurtado SI, González-Delgado AD (2019) Computer-aided environmental and exergy analysis as decision-making tools for selecting bio-oil feedstocks. Renew Sustain Energy Rev 112:42–57. https://doi.org/10.1016/j.rser.2019.05.044

    Article  Google Scholar 

  8. 8.

    Zhong C, Peters CJ, de Swaan AJ (2002) Thermodynamic modeling of biomass conversion processes. Fluid Ph Equilibria 194:805–815. https://doi.org/10.1016/S0378-3812(01)00668-9

    Article  Google Scholar 

  9. 9.

    Beal CM, Hebner RE, Webber ME (2012) Thermodynamic analysis of algal biocrude production. Energy 44(1):925–943. https://doi.org/10.1016/j.energy.2012.05.003

    CAS  Article  Google Scholar 

  10. 10.

    Keedy J, Prymak E, Macken N et al (2015) Exergy based assessment of the production and conversion of switchgrass, equine waste, and forest residue to bio-oil using fast pyrolysis. Ind Eng Chem Res 54(1):529–539. https://doi.org/10.1021/ie5035682

    CAS  Article  Google Scholar 

  11. 11.

    Peters JF, Petrakopoulou F, Dufour J (2014) Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Process Technol 119:245–255. https://doi.org/10.1016/j.fuproc.2013.11.007

    CAS  Article  Google Scholar 

  12. 12.

    Peters JF, Petrakopoulou F, Dufour J (2015) Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading. Energy 79:325–336. https://doi.org/10.1016/j.energy.2014.11.019

    CAS  Article  Google Scholar 

  13. 13.

    Meramo-Hurtado S, Ojeda-Delgado K, Sanchez-Tuiran E (2018) Exergy analysis of bioethanol production from rice residues. Contemp Eng Sci 11:467–474. https://doi.org/10.12988/ces.2018.8234

    CAS  Article  Google Scholar 

  14. 14.

    Xiao C, Liao Q, Fu Q et al (2019) Exergy analyses of biogas production from microalgae biomass via anaerobic digestion. Bioresour Technol 289:121709. https://doi.org/10.1016/j.biortech.2019.121709

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Khounani Z, Hosseinzadeh-Bandbafha H, Nazemi F et al (2021) Exergy analysis of a whole-crop safflower biorefinery: a step towards reducing agricultural wastes in a sustainable manner. J Environ Manage 279:111822. https://doi.org/10.1016/j.jenvman.2020.111822

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Prasakti L, Pratama SH, Fauzi A et al (2020) Exergy analysis of conventional and hydrothermal liquefaction-esterification processes of microalgae for biodiesel production. Open Chem 18(1):874–881. https://doi.org/10.1515/chem-2020-0132

    CAS  Article  Google Scholar 

  17. 17.

    Torres E, Rodriguez-Ortiz LA, Zalazar D et al (2020) 4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste. Renew Energy 162:296–307. https://doi.org/10.1016/j.renene.2020.07.147

    CAS  Article  Google Scholar 

  18. 18.

    Tamzysi C, Adnan MA, Rahma FN, Hidayat A (2020) Exergy analysis of microalgae thermochemical conversion using Aspen Plus simulation. Reaktor 20(4):166–173. https://doi.org/10.14710/reaktor.20.4.166-173

    Article  Google Scholar 

  19. 19.

    Aghbashlo M, Mandegari M, Tabatabaei M et al (2018) Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production. Energy 149:623–638. https://doi.org/10.1016/j.energy.2018.02.063

    CAS  Article  Google Scholar 

  20. 20.

    Aghbashlo M, Tabatabaei M, Hosseinpour S (2018) On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor. Energy Convers Manag 164:385–398. https://doi.org/10.1016/j.enconman.2018.02.086

    CAS  Article  Google Scholar 

  21. 21.

    Aghbashlo M, Tabatabaei M, Soltanian S et al (2019) Comprehensive exergoeconomic analysis of a municipal solid waste digestion plant equipped with a biogas genset. Waste Manag 87:485–498. https://doi.org/10.1016/j.wasman.2019.02.029

    Article  PubMed  Google Scholar 

  22. 22.

    Jones S, Zhu Y, Anderson D et al (2014) Process design and economics for the conversion of algal biomass to hydrocarbons: whole algae hydrothermal liquefaction and upgrading. Pacific Northwest National Lab, PNNL-23227, Richland, United States. https://doi.org/10.2172/1126336

  23. 23.

    Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36(5):2328–2342. https://doi.org/10.1016/j.energy.2011.03.013

    CAS  Article  Google Scholar 

  24. 24.

    Darmawan A, Hardi F, Yoshikawa K et al (2017) Enhanced process integration of entrained flow gasification and combined cycle: modeling and simulation using Aspen Plus. Energy Procedia 105:303–308. https://doi.org/10.1016/j.egypro.2017.03.318

    Article  Google Scholar 

  25. 25.

    Duan PG, Yang SK, Xu YP et al (2018) Integration of hydrothermal liquefaction and supercritical water gasification for improvement of energy recovery from algal biomass. Energy 155:734–745. https://doi.org/10.1016/j.energy.2018.05.044

    CAS  Article  Google Scholar 

  26. 26.

    Ranganathan P, Savithri S (2019) Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing. Bioresour Technol 284:256–265. https://doi.org/10.1016/j.biortech.2019.03.087

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ramirez JA, Brown R, Rainey TJ (2018) Techno-economic analysis of the thermal liquefaction of sugarcane bagasse in ethanol to produce liquid fuels. Appl Energy 224:184–193. https://doi.org/10.1016/j.apenergy.2018.04.127

    CAS  Article  Google Scholar 

  28. 28.

    Hou D, Shao S, Zhang Y et al (2012) Exergy analysis of a thermal power plant using a modeling approach. Clean Technol Environ Policy 14(5):805–813. https://doi.org/10.1007/s10098-011-0447-0

    Article  Google Scholar 

  29. 29.

    Hepbasli A (2008) A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renew Sustain Energy Rev 12(3):593–661. https://doi.org/10.1016/j.rser.2006.10.001

    Article  Google Scholar 

  30. 30.

    Kotas TJ (1985) Exergy method of thermal and chemical plant analysis. Butterworth-Heinemann, United Kingdom. https://doi.org/10.1016/C2013-0-00894-8

  31. 31.

    Mabrouk A, Erdocia X, Alriols MG et al (2016) Exergy analysis: an optimization tool for the performance evaluation of an organosolv process. Appl Therm Eng 106:1062–1066. https://doi.org/10.1016/j.applthermaleng.2016.06.085

    Article  Google Scholar 

  32. 32.

    Xiong J, Zhao H, Zheng C (2011) Exergy analysis of a 600 MWe oxy-combustion pulverized-coal- fired power plant. Energy Fuels 25(8):3854–3864. https://doi.org/10.1021/ef200702k

    CAS  Article  Google Scholar 

  33. 33.

    Olaleye AK, Wang M, Kelsall G (2015) Steady state simulation and exergy analysis of supercritical coal-fired power plant with CO2 capture. Fuel 151:57–72. https://doi.org/10.1016/j.fuel.2015.01.013

    CAS  Article  Google Scholar 

  34. 34.

    Feyzi V, Beheshti M (2017) Exergy analysis and optimization of reactive distillation column in acetic acid production process. Chem Eng Process 120:161–172. https://doi.org/10.1016/j.cep.2017.06.016

    CAS  Article  Google Scholar 

  35. 35.

    Song G, Shen L, Xiao J (2011) Estimating specific chemical exergy of biomass from basic analysis data. Ind Eng Chem Res 50(16):9758–9766. https://doi.org/10.1021/ie200534n

    CAS  Article  Google Scholar 

  36. 36.

    Bilgen S, Keleş S, Kaygusuz K (2012) Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae. Energy 41(1):380–385. https://doi.org/10.1016/j.energy.2012.03.001

    CAS  Article  Google Scholar 

  37. 37.

    Szargut J (2011) Appendix: standard chemical exergy. In: Bakshi BR, Gutowski TG, Sekulić DP (eds) Thermodynamics and the destruction of resources. Cambridge University Press, Cambridge, pp 489–494. https://doi.org/10.1017/CBO9780511976049.024

    Chapter  Google Scholar 

  38. 38.

    Qian H, Zhu W, Fan S et al (2017) Prediction models for chemical exergy of biomass on dry basis from ultimate analysis using available electron concepts. Energy 131:251–258. https://doi.org/10.1016/j.energy.2017.05.037

    CAS  Article  Google Scholar 

  39. 39.

    Morris DR, Szargut J (1986) Standard chemical exergy of some elements and compounds on the planet earth. Energy 11(8):733–755. https://doi.org/10.1016/0360-5442(86)90013-7

    CAS  Article  Google Scholar 

  40. 40.

    Van NT, Voldsund M, Elmegaard B et al (2014) On the definition of exergy efficiencies for petroleum systems: application to offshore oil and gas processing. Energy 73:264–281. https://doi.org/10.1016/j.energy.2014.06.020

    CAS  Article  Google Scholar 

  41. 41.

    Wall G (2003) Exergy tools. Proc Inst Mech Eng A 217(2):125–136. https://doi.org/10.1243/09576500360611399

    Article  Google Scholar 

  42. 42.

    Hognon C, Delrue F, Texier J et al (2015) Comparison of pyrolysis and hydrothermal liquefaction of Chlamydomonas reinhardtii. Growth studies on the recovered hydrothermal aqueous phase. Biomass Bioenergy 73:23–31. https://doi.org/10.1016/j.biombioe.2014.11.025

    CAS  Article  Google Scholar 

  43. 43.

    Durak H (2019) Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods. Biomass Convers Biorefin 9(2):459–470. https://doi.org/10.1007/s13399-019-00379-4

    CAS  Article  Google Scholar 

  44. 44.

    Xue X, Chen D, Song X, Dai X (2015) Hydrothermal and pyrolysis treatment for sewage sludge: choice from product and from energy benefit. Energy Procedia 66:301–304. https://doi.org/10.1016/j.egypro.2015.02.064

    CAS  Article  Google Scholar 

  45. 45

    Zhang B, Wu J, Deng Z et al (2017) A comparison of energy consumption in hydrothermal liquefaction and pyrolysis of microalgae. Trends Ren Energy 3(1):76–85. https://doi.org/10.17737/tre.2017.3.1.0013

    Article  Google Scholar 

  46. 46.

    Ramirez JA, Rainey TJ (2019) Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. J Clean Prod 229:513–527. https://doi.org/10.1016/j.jclepro.2019.05.017

    CAS  Article  Google Scholar 

  47. 47.

    Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6):3639–3646. https://doi.org/10.1021/ef100203u

    CAS  Article  Google Scholar 

  48. 48.

    Valdez PJ, Savage PE (2013) A reaction network for the hydrothermal liquefaction of Nannochloropsis sp. Algal Res 2(4):416–425. https://doi.org/10.1016/j.algal.2013.08.002

    Article  Google Scholar 

  49. 49.

    Faeth JL, Valdez PJ, Savage PE (2013) Fast hydrothermal liquefaction of Nannochloropsis sp. to produce biocrude. Energy Fuels 27(3):1391–1398. https://doi.org/10.1021/ef301925d

    CAS  Article  Google Scholar 

  50. 50.

    Aghbashlo M, Tabatabaei M, Mohammadi P et al (2017) Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Convers Manag 148:1–15. https://doi.org/10.1016/j.enconman.2017.05.048

    CAS  Article  Google Scholar 

  51. 51.

    Aghbashlo M, Rosen MA (2018) Exergoeconoenvironmental analysis as a new concept for developing thermodynamically, economically, and environmentally sound energy conversion systems. J Clean Prod 187:190–204. https://doi.org/10.1016/j.jclepro.2018.03.214

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

Ziba Borazjani: developing the concept and methodology, analyzing the data, writing the original draft, as well as reviewing and editing the final manuscript. Reza Azin: trial management, data acquisition, and reviewing the manuscript. Shahriar Osfouri: management, conceptualization, and acquisition of material used in the study, project initiation, reviewing, and editing. Markus Lehner: reviewing and editing the manuscript. Markus Ellersdorfer: reviewing, model validation, and editing the manuscript.

Corresponding author

Correspondence to Reza Azin.

Ethics declarations

Ethics Approval and Consent to Participate

All authors agree with the content and all give explicit consent to submit the paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 153 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borazjani, Z., Azin, R., Osfouri, S. et al. Computer-Aided Exergy Evaluation of Hydrothermal Liquefaction for Biocrude Production from Nannochloropsis sp.. Bioenerg. Res. (2021). https://doi.org/10.1007/s12155-021-10297-x

Download citation

Keywords

  • Thermochemical process
  • Exergy analysis
  • Process simulation
  • Algae