Skip to main content
Log in

Adaptation Strategy to Increase the Tolerance of Scheffersomyces stipitis NRRL Y-7124 to Inhibitors of Sugarcane Bagasse Hemicellulosic Hydrolysate Through Comparative Studies of Proteomics and Fermentation

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this work, we propose an adaptation strategy for Scheffersomyces stipitis NRRL Y-7124 to increase its tolerance to inhibitors of hemicellulosic hydrolysates in the production of bioethanol. Sugarcane bagasse pretreated with 0.5% (v/v) of sulfuric acid at 140 °C for 15 min was used as feedstock. The microorganism was subjected to a cell recycle batch fermentation system with increased inhibitors pressure, characterized by five consecutive batches with 33% of hydrolysate, followed by five subsequent batches with 67% of hydrolysate. The remaining composition of the culture media for each sequential batch (necessary to complete 100% of carbohydrate content) was synthetic substrate. Finally, the strain was used in a fed-batch fermentation with 100% of hydrolysate, resulting in an adapted strain of S. stipitis at the end. In order to validate the adaptation strategy, the fermentative performances of the adapted and non-adapted strains were compared under different acetic acid concentrations using synthetic substrate. 0.7 g/L of acetic acid significantly affected the fermentative performance of the non-adapted strain, while for the adapted strain, this value was 3.7-fold higher (2.6 g/L), confirming the increased tolerance. Through proteomic analysis, genes related to the defense mechanisms of S. stipitis against oxidative stress due to the presence of inhibitory compounds were identified, which plays a key role on the comprehension of the cell adaptation metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Da Fonseca Filho VF, Matelli JA, Balestieri JAP (2016) Carbon exergy tax applied to biomass integrated gasification combined cycle in sugarcane industry. Energy 103:715–724. https://doi.org/10.1016/j.energy.2016.02.161

    Article  CAS  Google Scholar 

  2. Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Article  CAS  Google Scholar 

  3. Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353. https://doi.org/10.1007/s13205-014-0246-5

    Article  PubMed  Google Scholar 

  4. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol 74:17–24. https://doi.org/10.1016/S0960-8524(99)00160-1

    Article  CAS  Google Scholar 

  5. Antunes FAF, Santos JC, Chandel AK, Milessi TSS, Peres GFD, Silva SS (2016) Hemicellulosic ethanol production by immobilized wild Brazilian yeast Scheffersomyces shehatae UFMG-HM 52.2: effects of cell concentration and stirring rate. Curr Microbiol 72:133–138. https://doi.org/10.1007/s00284-015-0923-6

    Article  CAS  PubMed  Google Scholar 

  6. Canilha L, Chandel AK, Milessi TSS, Antunes FAF, Freitas WLC, Felipe MGA, Silva SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012(7):989572–989515. https://doi.org/10.1155/2012/989572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Soares LB, Bonan CIDG, Biazi LE, Dionísio SR, Bonatelli ML, Andrade ALD, Renzano EC, Costa AC, Ienczak JL (2020) Investigation of hemicellulosic hydrolysate inhibitor resistance and fermentation strategies to overcome inhibition in non-saccharomyces species. Biomass Bioenergy 137:105549. https://doi.org/10.1016/j.biombioe.2020.105549

    Article  CAS  Google Scholar 

  8. Silva JPA, Mussato SI, Roberto IC, Teixeira JA (2012) Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renew Energy 37:259–265. https://doi.org/10.1016/j.renene.2011.06.032

    Article  CAS  Google Scholar 

  9. Bonan CIDG, Biazi LE, Santos SC, Soares LB, Dionísio SR, Hoffman ZB, Costa AC, Ienczak JL (2019) Online monitoring of the redox potential in microaerobic and anaerobic Scheffersomyces stipitis fermentations. Biotechnol Lett 41:753–761. https://doi.org/10.1007/s10529-019-02674-6

    Article  CAS  PubMed  Google Scholar 

  10. Delgenes JP, Moletta R (1989) Fermentation of D-xylose, D-glucose, L-arabinose mixture by Pichia stipitis: effect of the oxygen transfer rate on fermentation performance. Biotechnol Bioeng 34(3):398–402. https://doi.org/10.1002/bit.260340314

    Article  CAS  PubMed  Google Scholar 

  11. Dellweg H, Rizzi M, Klein C (1989) Contolled limited aeration and metabolic regulation during the production of ethanol from D-xylose by Pichia stipitis. J Biotechnol 12(2):111–122. https://doi.org/10.1016/0168-1656(89)90010-2

    Article  CAS  Google Scholar 

  12. Santos SC, Dionísio SR, De Andrade ALD, Roque LR, Costa AC, Ienczak JL (2015) Fermentation of xylose and glucose mixture in intensified reactors by Scheffersomyces stipitis to produce ethanol. Int J Biol Biomol Agric Food Biotechnol Eng 9(5):503–508. https://doi.org/10.5281/zenodo.1106099

    Article  Google Scholar 

  13. Bellido C, Bolado S, Coca M, Lucas S, González-Benito G, García-Cubero MT (2011) Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour Technol 102:10868–11087. https://doi.org/10.1016/j.biortech.2011.08.128

    Article  CAS  PubMed  Google Scholar 

  14. Nakanishi SC, Soares LB, Biazi LE, Nascimento VM, Ienczak JL, Rocha GJM (2017) Fermentation strategy for second generation ethanol production from sugarcane bagasse hydrolyzate by Spathaspora passalidarum and Scheffersomyces stipitis. Biotechnol Bioeng 114:2211–2221. https://doi.org/10.1002/bit.26357

    Article  CAS  PubMed  Google Scholar 

  15. Biswas R, Uellendahl H, Ahring BK (2013) Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054. AMB Express 3(42):1–7. https://doi.org/10.1186/2191-0855-3-42

    Article  CAS  Google Scholar 

  16. Canilha L, Carvalho W, Md F, Silva JB, Giulietti M (2010) Ethanol production from sugarcane bagasse hydrolysate using Pichia stipitis. Appl Biochem Biotechnol 161(1-8):84–92. https://doi.org/10.1007/s12010-009-8792-8

    Article  CAS  PubMed  Google Scholar 

  17. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taherzadeh M.J, Karimi K (2011) in Biofuels: alternative feedstocks and conversion process. Fermentation inhibitors in ethanol process and different strategies to reduce their effects, pp. 287-311. https://doi.org/10.1016/B978-0-12-385099-7.00012-7

  19. García-Aparicio MP, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288. https://doi.org/10.1385/ABAB:129:1:278

    Article  PubMed  Google Scholar 

  20. Matos ITSR, Do Carmo EJ, De Assunção EN, De Almeida RA, Soares VM, Astolfi Filho S (2016) Xylitol production and furfural consumption by a wild type Geotrichum sp. Electron J Biotechnol 24:21–25. https://doi.org/10.1016/j.ejbt.2016.08.005

    Article  Google Scholar 

  21. Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98(9):1767–1773. https://doi.org/10.1016/j.biortech.2006.07.021

    Article  CAS  PubMed  Google Scholar 

  22. Nouri H, Azin M, Mousavi AL (2017) Enhanced ethanol production from sugarcane bagasse hydrolysate with high content of inhibitors by an adapted barnettozyma californica. Environ Prog Sustain Energy 37(3):1169–1175. https://doi.org/10.1002/ep.12769

    Article  CAS  Google Scholar 

  23. Bonturi N, Crucello A, Viana AJC, Miranda EA (2017) Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 57:16–25. https://doi.org/10.1016/j.procbio.2017.03.007

    Article  CAS  Google Scholar 

  24. Sene L, Converti A, Zilli M, Felipe MG, Silva SS (2001) Metabolic study of the adaptation of the yeast Candida guilliermondii to sugarcane bagasse hydrolysate. Appl Microbiol Biotechnol 57(5-6):738–743. https://doi.org/10.1007/s002530100816

    Article  CAS  PubMed  Google Scholar 

  25. Roque LR, Morgado GP, Nascimento VM, Ienczak JL, Rabelo SC (2019) Liquid-liquid extraction: a promising alternative for inhibitors removing of pentoses fermentation. Fuel 242:775–787. https://doi.org/10.1016/j.fuel.2018.12.130

    Article  CAS  Google Scholar 

  26. Santos SC, Sousa AS, Dionísio SR, Tramontina R, Ruller R, Squina FM, Rossell CEV, Da Costa AC, Ienczak JL (2016) Bioethanol production by recycled Scheffersomyces stipitis in sequencial batch fermentations with high cell density using xylose and glucose mixture. Bioresour Technol 219:319–329. https://doi.org/10.1016/j.biortech.2016.07.102

    Article  CAS  PubMed  Google Scholar 

  27. Neitzel T, Lima CS, Biazi LE, Collograi KC, da Costa AC, dos Santos LV, Ienczal JL (2020) Impact of the Melle-Boinot process on the enhancement of second generation ethanol production by Spathaspora passalidarum. Renew Energy 160:1206–1216. https://doi.org/10.1016/j.renene.2020.07.027

    Article  CAS  Google Scholar 

  28. Westeman JO, Taherzadeh MJ, Franzén CJ (2012) Inhibitor tolerance and flocculation of a yeast strain suitable for second generation bioethanol production. Electron J Biotechnol 15(3):1–14. https://doi.org/10.2225/vol15-issue3-fulltext-8

    Article  CAS  Google Scholar 

  29. Villén J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3(10):1630–1638. https://doi.org/10.1038/nprot.2008.150

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaupert Neto AA, Borin GP, Goldman GH, Damásio AR, Oliveira JVC (2016) Insights into the plant polysaccharide degradation potential of the xylanolytic yeast Pseudozyma brasiliensis. FEMS Yeast Res 16(2):fov117. https://doi.org/10.1093/femsyr/fov117

    Article  CAS  PubMed  Google Scholar 

  31. Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75(17):4646–4658. https://doi.org/10.1021/ac0341261

    Article  CAS  PubMed  Google Scholar 

  32. Delgenes JP, Moletta R, Navarro JM (1988) Fermentation of D-xylose, D-glucose and L-arabinose mixture by Pichia stipitis Y 7124: sugar tolerance. Appl Microbiol Biotechnol 29:155–161. https://doi.org/10.1007/BF01982895

    Article  CAS  Google Scholar 

  33. Shi J, Zhang M, Zhang L, Wang P, Jiang L, Deng H (2014) Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production. Microb Biotechnol 7:90–99. https://doi.org/10.1111/1751-7915.12092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slininger PJ, Shea-Andersh MA, Thompson SR, Dien BS, Kurtzman CP, Balan V, Douza LC, Uppugundla N, Dale BE, Cotta MA (2015) Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading. Biotechnol Biofuels 8:60. https://doi.org/10.1186/s13068-015-0239-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Agbogbo FK, Haagensen FD, Milam D, Wenger KS (2008) Fermentation of acid-pretreatment corn stover to ethanol without detoxification using Pichia stipitis. Appl Biochem Biotechnol 145:53–58. https://doi.org/10.1007/s12010-007-8056-4

    Article  CAS  PubMed  Google Scholar 

  36. Pereira SR, Sànchez i Nogué V, Frazão CJR, Serafim LS, Gorwa-Grauslund MF, Xavier AMRB (2015) Adaptation of Scheffersomyces stipitis to hardwood spent sulfite liquor by evolutionary engineering. Biotechnol Biofuels 8:50. https://doi.org/10.1186/s13068-015-0234-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Landaeta R, Aroca G, Acevedo F, Teixeira JA, Mussato SI (2013) Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Appl Energy 102:124–130. https://doi.org/10.1016/j.apenergy.2012.06.048

    Article  CAS  Google Scholar 

  38. Buu LM, Chen YC, Lee FJS (2003) Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae. J Biol Chem 278:17203–17209. https://doi.org/10.1074/jbc.M213268200

    Article  CAS  PubMed  Google Scholar 

  39. Fleck CB, Brock M (2009) Re-characterisation of Saccharomyces cerevisiae Ach1p: fungal CoA-transferases are involved in acetic acid detoxification. Fungal Genet Biol 46:473–485. https://doi.org/10.1016/j.fgb.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  40. Chen R, Dou J (2016) Biofuels and bio-based chemicals from lignocellulose: metabolic engineering strategies in strain development. Biotechnol Lett 38:213–221. https://doi.org/10.1007/s10529-015-1976-0

    Article  CAS  PubMed  Google Scholar 

  41. Roe AJ, McLaggan D, Davidson I, O’Byrne C, Booth IR (1998) Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol 180:767–772. https://doi.org/10.1128/JB.180.4.767-772.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao J, Wang M, Yang Z, Gong Q, Lu Y, Yang Z (2005) Mediated electrochemical measurement of the inhibitory effects of furfural and acetic acid on Saccharomyces cerevisiae and Candida shehatae. Biotechnol Lett 27:207–211. https://doi.org/10.1007/s10529-004-7884-3

    Article  CAS  PubMed  Google Scholar 

  43. Giannattasio S, Guaragnella N, Zdralević M, Marra E (2013) Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 4:33. https://doi.org/10.3389/fmicb.2013.00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao J, Yuan W, Li Y, Bai F, Jiang Y (2017) Synergistic effect of thioredoxin and its reductase from Kluyveromyces marxianus on enhanced tolerance to multiple lignocellulose-derived inhibitors. Microb Cell Factories 16:181. https://doi.org/10.1186/s12934-017-0795-5

    Article  CAS  Google Scholar 

  45. Stadtman ER, Berlett BS (1997) Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10(5):485–494. https://doi.org/10.1021/tx960133r

    Article  CAS  PubMed  Google Scholar 

  46. Storz G, Christman MK, Sies H, Ames BN (1987) Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc Natl Acad Sci 84:8917–8921. https://doi.org/10.1073/pnas.84.24.8917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herrero E, Ros J, Belli G, Cabiscol E (2008) Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217–1235. https://doi.org/10.1016/j.bbagen.2007.12.004

    Article  CAS  PubMed  Google Scholar 

  48. Nohl H, Kozlov AV, Gille L, Staniek K (2003) Cell respiration and formation of reactive oxygen species: facts and artefacts. Biochem Soc Trans 31:1308–1311. https://doi.org/10.1042/bst0311308

    Article  CAS  PubMed  Google Scholar 

  49. Arellano-Plaza M, Gschaedler-Mathis A, Noriega-Cisneros R, Clemente-Guerrero M, Manzo-Ávalos S, González-Hernández JC, Saavedra-Molina A (2013) Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress. World J Microbiol Biotechnol 29:1279–1287. https://doi.org/10.1007/s11274-013-1291-7

    Article  CAS  PubMed  Google Scholar 

  50. Miura T, Abe F, Inoue A, Usami R, Horikoshi K (2002) Superoxide dismutase is involved in high tolerance to copper in the deep-sea yeast, Cryptococcus sp. N6. Biotechnol Lett 24:1069–1074. https://doi.org/10.1023/A:1016082530108

    Article  CAS  Google Scholar 

  51. Grant CM (2001) Role of the glutathione/glutaredoxin and thioredoxin systems in yeast growth and response to stress conditions. Mol Microbiol 39:533–541. https://doi.org/10.1046/j.1365-2958.2001.02283.x

    Article  CAS  PubMed  Google Scholar 

  52. Kumar V, Hart AJ, Keerthiraju ER, Waldron PR, Tucker GA, Greetham D (2015) Expression of mitochondrial cytochrome C oxidase chaperone gene (COX20) improves tolerance to weak acid and oxidative stress during yeast fermentation. PLoS One 10:e0139129. https://doi.org/10.1371/journal.pone.0139129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ludovico P, Rodriques F, Almeisa A, Silva MT, Barrientos A, Corte-Real M (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 13(8):2598–2606. https://doi.org/10.1091/mbc.e01-12-0161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Côrte-Real M, Madeo F (2013) Yeast programmed cell death and aging. Front Oncol 3:283. https://doi.org/10.3389/fonc.2013.00283

    Article  PubMed  PubMed Central  Google Scholar 

  55. Carmona-Gutierrez D, Eisenberg T, Büttner S, Meisinger C, Kroemer G, Madeo F (2010) Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ 17:763–773. https://doi.org/10.1038/cdd.2009.219

    Article  CAS  PubMed  Google Scholar 

  56. Burphan T, Tatip S, Limcharoensuk T, Kangboonruang K, Boonchird C, Auesukaree C (2018) Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Sci Rep 8:13069. https://doi.org/10.1038/s41598-018-31558-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luk E, Carroll M, Baker M, Culotta VC (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proc Natl Acad Sci U S A 100:10353–10357. https://doi.org/10.1073/pnas.1632471100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Culotta VC, Yang M, O’Halloran TV (2006) Activation of superoxide dismutases: putting the metal to the pedal. Biochim Biophys Acta 1763:747–758. https://doi.org/10.1016/j.bbamcr.2006.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME (2016) Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase. J Zhejiang Univ Sci B 17(4):247–261. https://doi.org/10.1631/jzus.B1500219

    Article  CAS  PubMed Central  Google Scholar 

  60. Molenaar D, Van der Rest ME, Petrović S (1998) Biochemical and genetic characterization of the membrane associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum. Eur J Biochem 254(2):395–403. https://doi.org/10.1046/j.1432-1327.1998.2540395.x

    Article  CAS  PubMed  Google Scholar 

  61. Oh TJ, Kim IG, Park SY, Kim KC, Shim HW (2002) NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate. Environ Toxicol Pharmacol 11(1):9–14. https://doi.org/10.1016/s1382-6689(01)00093-x

    Article  CAS  PubMed  Google Scholar 

  62. Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2:11132635–11132611. https://doi.org/10.1155/2015/132635

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Brazilian Center of Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Brazilian Biosciences National Laboratory (LNBio), Coordination of Improvement of Higher Level Personnel (CAPES), and Foundation for Research Support of the State of São Paulo (FAPESP) (process numbers 2014/01135-0, 2015/20630-4, 2016/14567-0, and 2017/04997-0) for financial support, assistance regarding the use of facilities, the sharing of expertise, and the opportunity to develop this work.

Funding

The authors acknowledge the Brazilian Center of Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Brazilian Biosciences National Laboratory (LNBio), Coordination of Improvement of Higher Level Personnel (CAPES), and Foundation for Research Support of the State of São Paulo (FAPESP) (process numbers 2014/01135-0, 2015/20630-4, 2016/14567-0, and 2017/04997-0) for financial support

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaciane L. Ienczak.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflicts of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendix A. Supplementary Material 1: E-supplementary data of this work can be found in online version of the paper.

ESM 1

(DOCX 26 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biazi, L.E., Santos, S.C., Kaupert Neto, A.A. et al. Adaptation Strategy to Increase the Tolerance of Scheffersomyces stipitis NRRL Y-7124 to Inhibitors of Sugarcane Bagasse Hemicellulosic Hydrolysate Through Comparative Studies of Proteomics and Fermentation. Bioenerg. Res. 15, 479–492 (2022). https://doi.org/10.1007/s12155-021-10267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10267-3

Keywords

Navigation