Skip to main content
Log in

Synergistic Effect of Moderate Steam Explosion Pretreatment and Bovine Serum Albumin Addition for Enhancing Enzymatic Hydrolysis of Poplar

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Steam explosion (SE) pretreatment is a widely adopted method for enhancing enzymatic hydrolysis of lignocellulosic biomass in biorefinery. In this work, moderate SE pretreatment was employed to overcome the recalcitrance of cell wall through systematically assessing physicochemical and structural modifications. The hydrolysis yield of pretreated poplar by SE pretreatment (up to 69.7%) was higher than untreated poplar (26.8%). With increasing SE severity from 3.5 to 4.5, the contents of hemicellulose and lignin were reduced from 15.7 to 5.3% and 25.4 to 20.7%, respectively. Furthermore, it was observed that the cell wall structure became rough and collapsed. Meanwhile, channels emerged in the internal cell wall primarily due to the removal of hemicellulose and lignin along with the migration of lignin from inside to the out surface of cell wall. These results induced more exposure of cellulose to enzyme attacking, thus improved accessibility to cellulolytic enzymes. Addition of bovine serum albumin (BSA) obtained equal hydrolysis efficiency of 70.1% with a 33% reduction of enzyme loading, which was advantageous for enzyme costs effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request through a material transfer agreement.

References

  1. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. https://doi.org/10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  2. Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631. https://doi.org/10.1016/j.carbpol.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  3. Auxenfans T, Cronier D, Chabbert B, Paes G (2017) Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Biotechnol Biofuels 10:36. https://doi.org/10.1186/s13068-017-0718-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar R, Wyman CE (2014) Strong cellulase inhibition by Mannan polysaccharides in cellulose conversion to sugars. Biotechnol Bioeng 111(7):1341–1353. https://doi.org/10.1002/bit.25218

    Article  CAS  PubMed  Google Scholar 

  5. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101(13):4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093

    Article  CAS  PubMed  Google Scholar 

  6. Chen WH, Pen BL, Yu CT, Hwang WS (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresour Technol 102(3):2916–2924. https://doi.org/10.1016/j.biortech.2010.11.052

    Article  CAS  PubMed  Google Scholar 

  7. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100(1):10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  PubMed  Google Scholar 

  8. Liu Y, Wang J, Wolcott MP (2017) Evaluating the effect of wood ultrastructural changes from mechanical treatment on kinetics of monomeric sugars and chemicals production in acid bisulfite treatment. Bioresour Technol 226:24–30. https://doi.org/10.1016/j.biortech.2016.12.009

    Article  CAS  PubMed  Google Scholar 

  9. Pedersen M, Vikso-Nielsen A, Meyer AS (2010) Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem 45:1181–1186. https://doi.org/10.1016/j.procbio.2010.03.020

    Article  CAS  Google Scholar 

  10. Kutsay A, Kratky L, Jirout T (2016) Energy-economic analysis of thermal-expansionary pretreatment for its implementation at a biogas plant. Chem Eng Technol 39:2284–2292. https://doi.org/10.1002/ceat.201500732

    Article  CAS  Google Scholar 

  11. Ruiz HA, Silva PD, Ruzene DS, Lime LF, Vicente AA, Teixeira JA (2012) Bioethanol production from hydrothermal pretreatment wheat straw by flocculating Saccharomyces cerevisiae strain- Effect of process conditions. Fuel 95:528–536. https://doi.org/10.1016/j.fuel.2011.10.060

    Article  CAS  Google Scholar 

  12. Ruiz HA, Rodriguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agricultural residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51. https://doi.org/10.1016/j.rser.2012.11.069

    Article  CAS  Google Scholar 

  13. Kristensen JB, Thygesen LG, Felby C, Jorgensen H, Elder T (2008) Cell-wall structural changes in wheat straw pretreated for bioethanol production. Biotechnol Biofuels 1(1):5. https://doi.org/10.1186/1754-6834-1-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pedersen M, Meyer AS (2010) Lignocellulose pretreatment severity - relating pH to biomatrix opening. New Biotechnol 27:739–750. https://doi.org/10.1016/j.nbt.2010.05.003

    Article  CAS  Google Scholar 

  15. Sun S, Sun S, Cao X, Sun R (2016) The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour Technol 199:49–58. https://doi.org/10.1016/j.biortech.2015.08.061

    Article  CAS  PubMed  Google Scholar 

  16. Overend R, Chornet E, Gascoigne JA (1987) Fractionation of lignocellulosics bysteam-aqueous pretreatments. Philos Trans R Soc A 321:523–536. https://doi.org/10.1098/rsta.1987.0029

    Article  CAS  Google Scholar 

  17. Chornet E, Overend RP (2017) How the severity factor in biomass hydrolysis cameabout. In: Ruiz HA, Thomsen MH, Trajano HL (eds) Hydrothermal Processing in Biorefineries. Springer, Cham, pp 1–3. https://doi.org/10.1007/978-3-319-56457-9_1

    Chapter  Google Scholar 

  18. Ruiz HA, Thomsen MH, Trajano HL (2017) Hydrothermal processing in Biorefineries. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-56457-9

    Book  Google Scholar 

  19. Conrad M, Haring H, Smirnova I (2019) Design of an industrial autohydrolysis pretreatment plant for annual lignocellulose. Biomass Convers Bior. https://doi.org/10.1007/s13399-019-0479-1

  20. Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romani A, Castro E, Torres A, Rodriguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS (2020) Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  21. Eom T, Chaiprapat S, Charnnok B (2019) Enhanced enzymatic hydrolysis and methane production from rubber wood waste using steam explosion. J Environ Manag 235:231–239. https://doi.org/10.1016/j.jenvman.2019.01.041

    Article  CAS  Google Scholar 

  22. Ruiz E, Cara C, Manzanares P, Ballesteros M, Castro E (2008) Evaluation of steam explosion pre-treatment for enzymatic hydrolysis of sunflower stalks. Enzym Microb Technol 42(2):160–166. https://doi.org/10.1016/j.enzmictec.2007.09.002

    Article  CAS  Google Scholar 

  23. Li J, Henriksson G, Gellerstedt G (2007) Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresour Technol 98(16):3061–3068. https://doi.org/10.1016/j.biortech.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  24. Jacquet N, Maniet G, Vanderghem C, Delvigne F, Richel A (2015) Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind Eng Chem Res 54(10):2593–2598. https://doi.org/10.1021/ie503151g

    Article  CAS  Google Scholar 

  25. Martin-Sampedro R, Eugenio ME, Garcia JC, Lopez F, Villar JC, Diaz MJ (2012) Steam explosion and enzymatic pretreatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass Bioenergy 42:97–106. https://doi.org/10.1016/j.biombioe.2012.03.032

    Article  CAS  Google Scholar 

  26. Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101(5):913–925. https://doi.org/10.1002/bit.21959

    Article  CAS  PubMed  Google Scholar 

  27. Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):1333–1339. https://doi.org/10.1021/bp0702018

    Article  CAS  PubMed  Google Scholar 

  28. Ding D, Li P, Zhang X, Ramaswamy S, Xu F (2019) Synergy of hemicelluloses removal and bovine serum albumin blocking of lignin for enhanced enzymatic hydrolysis. Bioresour Technol 273:231–236. https://doi.org/10.1016/j.biortech.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B (2008) Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated Creeping Wild Ryegrass. Appl Biochem Biotechnol 146(1-3):231–248. https://doi.org/10.1007/s12010-007-8035-9

    Article  CAS  PubMed  Google Scholar 

  30. Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338(6110):1055–1060. https://doi.org/10.1126/science.1227491

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Liu Z, Zheng X, Pan X, Hui L, Li J, Zhang H (2020) Assessment on temperature-pressure severally controlled explosion pretreatment of poplar. Carbohydr Polym 230:115622. https://doi.org/10.1016/j.carbpol.2019.115622

    Article  CAS  PubMed  Google Scholar 

  32. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2006) Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Technical Report NREL/TP-510-42623

  33. Tan L, Liu Z, Zhang T, Wang Z, Liu T (2020) Enhanced enzymatic digestibility of poplar wood by quick hydrothermal treatment. Bioresour Technol 302:122795. https://doi.org/10.1016/j.biortech.2020.122795

    Article  CAS  PubMed  Google Scholar 

  34. Sluiter A, Hames B, Ruiz RO, Scarlata C, Sluiter J, Templeton D (2008) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510-42618

  35. Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  36. Chornet E, Overend RP (1988) Phenomenological kinetics and reaction engineering aspects of steam/aqueous treatments. Steam Explosion Techniques: Fundamentals and Industrial Applications, Proceedings of the International Workshop on Steam Explosion Technique. Gordon and Breach Science, New York pp. 2158

  37. Wang H, Liu Z, Hui L, Ma L, Zheng X, Li J, Zhang Y (2020) Understanding the structural changes of lignin in poplar following steam explosion pretreatment. Holzforschung 74(3):275–285. https://doi.org/10.1515/hf-2019-0087

    Article  CAS  Google Scholar 

  38. Meng X, Wells T, Sun Q, Huang F, Ragauskas A (2015) Insights into the effect of dilute acid, hot water or alkaline pretreatment on the cellulose accessible surface area and the overall porosity of Populus. Green Chem 17(8):4239–4246. https://doi.org/10.1039/c5gc00689a

    Article  CAS  Google Scholar 

  39. Zhong L, Yang L, Wang C, Ji X, Yang G, Chen J, Yoo CG (2020) NaOH-aided sulfolane pretreatment for effective fractionation and utilization of willow (Salix matsudana cv. Zhuliu). Ind Eng Chem Res 59:17546–17553. https://doi.org/10.1021/acs.iecr.0c01208

    Article  CAS  Google Scholar 

  40. Ling Z, Guo Z, Huang C, Yao L, Xu F (2020) Deconstruction of oriented crystalline cellulose by novel levulinic acid based deep eutectic solvents pretreatment for improved enzymatic accessibility. Bioresour Technol 305:123025. https://doi.org/10.1016/j.biortech.2020.123025

    Article  CAS  PubMed  Google Scholar 

  41. Zhang X, Bai Y, Cao X, Sun R (2017) Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis. Bioresour Technol 238:1–6. https://doi.org/10.1016/j.biortech.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  42. Diop CI, Lavoie JM, Huneault MA (2015) Structural changes of Salix miyabeana cellulose fibres during dilute-acid steam explosion: impact of reaction temperature and retention time. Carbohydr Polym 119:8–17. https://doi.org/10.1016/j.carbpol.2014.11.031

    Article  CAS  PubMed  Google Scholar 

  43. Chundawat SPS, Donohoe BS, da Costa Sousa L, Elder T, Agarwal UP, Lu F, Ralph J, Himmel ME, Balan V, Dale BE (2011) Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ Sci 4(3):566–576. https://doi.org/10.1017/S1431927614000063

    Article  CAS  Google Scholar 

  44. Ding D, Zhou X, Ji Z, You T, Xu F (2016) How does hemicelluloses removal alter plant cell wall nanoscale architecture and correlate with enzymatic digestibility? BioEnerg Res 9(2):601–609. https://doi.org/10.1007/s12155-015-9703-1

    Article  CAS  Google Scholar 

  45. Dos Santos AC, Ximenes E, Kim Y, Ladisch MR (2019) Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol 37(5):518–531. https://doi.org/10.1016/j.tibtech.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  46. Su Y, Huang C, Lai C, Yong Q (2021) Green solvent pretreatment for enhanced production of sugars and antioxidative lignin from poplar. Bioresour Technol 321:124471. https://doi.org/10.1016/j.biortech.2020.124471

    Article  CAS  PubMed  Google Scholar 

  47. Jia Y, Yang C, Shen B, Ling Z, Huang C, Li X, Lai C, Yong Q (2021) Comparative study on enzymatic digestibility of acid-pretreated poplar and larch based on a comprehensive analysis of the lignin-derived recalcitrance. Bioresour Technol 319:124225. https://doi.org/10.1016/j.biortech.2020.124225

    Article  CAS  PubMed  Google Scholar 

  48. Song Y, Shi X, Ma S, Yang X, Zhang X (2020) A novel aqueous gallic acid-based natural deep eutectic solvent for delignification of hybrid poplar and enhanced enzymatic hydrolysis of treated pulp. Cellulose 27(14):8301–8315. https://doi.org/10.1007/s10570-020-03342-z

    Article  CAS  Google Scholar 

  49. Lai C, Yang C, Zhao Y, Jia Y, Chen L, Zhou C, Yong Q (2020) Promoting enzymatic saccharification of organosolv-pretreated poplar sawdust by saponin-rich tea seed waste. Bioprocess Biosyst Eng 43(11):1999–2007. https://doi.org/10.1007/s00449-020-02388-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Fundamental Research Funds for Tianjin Universities (2019KJ208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dayong Ding or Zhong Liu.

Ethics declarations

Ethics Approval

Not applicable.

Code Availability

Not applicable.

Competing Interests

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 351 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ding, D., Liu, Z. et al. Synergistic Effect of Moderate Steam Explosion Pretreatment and Bovine Serum Albumin Addition for Enhancing Enzymatic Hydrolysis of Poplar. Bioenerg. Res. 14, 534–542 (2021). https://doi.org/10.1007/s12155-021-10265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10265-5

Keywords

Navigation