Study on the Pyrolysis Characteristics, Kinetics and Mineral Transformation of Paper Sludge

Abstract

To effectively utilize paper sludge and allow for energy recovery, the thermal behaviors of two paper sludge (PS) were studied by thermogravimetric analysis (TGA). The kinetic analysis was conducted according to Coats-Redfern (CR) method. The evolution of pore structure and surface morphology was investigated by N2 adsorption and scanning electron microscopy (SEM), respectively. The mineral transformation was analyzed by Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). Derivative thermogravimetry (DTG) curves of PS show two different stages. The first stage was due to devolatilization (200–400 °C) and the second stage (650–800 °C) accounted for the mineral decomposition and char degradation. It was found that a large number of pores formed during pyrolysis because of char fragmentation. The specific surface areas increased from 5.161 to 22.894 m2 g−1 for PSA and from 9.007 to 16.126 m2 g−1 for PSB with the increase of temperature. The intense absorption bands of calcite (1426, 875 and 712 cm−1) in raw material indicated that calcite was the main mineral of PS. The decomposition of calcite at 700 °C and the further production of gehlenite (916 cm−1) at 900 °C, and the dehydration of kaolinite at 500 °C and further transformation into mullite (996 cm−1) at 900 °C were observed by both FTIR and XRD. The XRD results were generally consistent with FTIR analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The data and material of the current study are available from the corresponding author on reasonable request.

References

  1. 1.

    Ridout AJ, Carrier M, Gorgens J (2015) Fast pyrolysis of low and high ash paper waste sludge: influence of reactor temperature and pellet size. J Anal Appl Pyrolysis 111:64–75. https://doi.org/10.1016/j.jaap.2014.12.010

    CAS  Article  Google Scholar 

  2. 2.

    Toczyłowska-Mamińska R (2017) Limits and perspectives of pulp and paper industry wastewater treatment–a review. Renew Sust Energ Rev 78:764–772. https://doi.org/10.1016/j.rser.2017.05.021

    CAS  Article  Google Scholar 

  3. 3.

    Jaria G, Silva CP, Ferreira CI, Otero M, Calisto V (2017) Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: an alternative waste management strategy. J Environ Manag 188:203–211. https://doi.org/10.1016/j.jenvman.2016.12.004

    CAS  Article  Google Scholar 

  4. 4.

    Brigagao GV, Araujo ODQF, de Medeiros JL, Mikulcic H, Duic N (2019) A techno-economic analysis of thermochemical pathways for corncob-to-energy: fast pyrolysis to bio-oil, gasification to methanol and combustion to electricity. Fuel Process Technol 193:102–113. https://doi.org/10.1016/j.fuproc.2019.05.011

    CAS  Article  Google Scholar 

  5. 5.

    Xie ZQ, Ma XQ (2013) The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresour Technol 146:611–618. https://doi.org/10.1016/j.biortech.2013.07.127

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Areeprasert C, Scala F, Coppola A, Urciuolo M, Chirone R, Chanyavanich P, Yoshikawa K (2016) Fluidized bed co-combustion of hydrothermally treated paper sludge with two coals of different rank. Fuel Process Technol 144:230–238. https://doi.org/10.1016/j.fuproc.2015.12.033

    CAS  Article  Google Scholar 

  7. 7.

    Chiang KY, Lu CH, Lin MH, Chien KL (2013) Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system. Energy 50:47–53. https://doi.org/10.1016/j.energy.2012.12.010

    CAS  Article  Google Scholar 

  8. 8.

    Chen QD, Liu H, Ko JH, Wu HN, Xu QY (2019) Structure characteristics of bio-char generated from co-pyrolysis of wooden waste and wet municipal sewage sludge. Fuel Process Technol 183:48–54. https://doi.org/10.1016/j.fuproc.2018.11.005

    CAS  Article  Google Scholar 

  9. 9.

    Strezov V, Evans T (2009) Thermal processing of paper sludge and characterisation of its pyrolysis products. Waste Manag 29:1644–1648. https://doi.org/10.1016/j.wasman.2008.11.024

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Yoon K, Cho DW, Tsang DCW, Bolan N, Rinklebe J, Song H (2017) Fabrication of engineered biochar from paper mill sludge and its application into removal of arsenic and cadmium in acidic water. Bioresour Technol 246:69–75. https://doi.org/10.1016/j.biortech.2017.07.020

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Nanda S, Mohanty P, Pant KK, Naik S, Kozinski JA, Dalai AK (2012) Characterization of north American Lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenerg Res 6:663–677. https://doi.org/10.1007/s12155-012-9281-4

    CAS  Article  Google Scholar 

  12. 12.

    Lou R, Wu SB, Lv GJ, Yang Q (2012) Energy and resource utilization of deinking sludge pyrolysis. Appl Energy 90:46–50. https://doi.org/10.1016/j.apenergy.2010.12.025

    CAS  Article  Google Scholar 

  13. 13.

    Yao ZL, Ma XQ, Wu ZD, Yao TT (2017) TGA-FTIR analysis of co-pyrolysis characteristics of hydrochar and paper sludge. J Anal Appl Pyrolysis 123:40–48. https://doi.org/10.1016/j.jaap.2016.12.031

    CAS  Article  Google Scholar 

  14. 14.

    Jiang J, Ma XQ (2011) Experimental research of microwave pyrolysis about paper mill sludge. Appl Therm Eng 31:3897–3903. https://doi.org/10.1016/j.applthermaleng.2011.07.037

    CAS  Article  Google Scholar 

  15. 15.

    Osman AI, Abdelkader A, Farrell C, Rooney D, Morgan K (2019) Reusing, recycling and up-cycling of biomass: a review of practical and kinetic modelling approaches. Fuel Process Technol 192:179–202. https://doi.org/10.1016/j.fuproc.2019.04.026

    CAS  Article  Google Scholar 

  16. 16.

    Yu YH, Kim SD, Lee JM, Lee KH (2002) Kinetic studies of dehydration, pyrolysis and combustion of paper sludge. Energy 27:457–469. https://doi.org/10.1016/s0360-5442(01)00097-4

    CAS  Article  Google Scholar 

  17. 17.

    Fang SW, Lin YS, Lin Y, Chen S, Shen XY, Zhong TM, Ding LX, Ma XQ (2020) Influence of ultrasonic pretreatment on the co-pyrolysis characteristics and kinetic parameters of municipal solid waste and paper mill sludge. Energy 190. https://doi.org/10.1016/j.energy.2019.116310

  18. 18.

    Lin YS, Ma XQ, Yu ZS, Cao YW (2014) Investigation on thermochemical behavior of co-pyrolysis between oil-palm solid wastes and paper sludge. Bioresour Technol 166:444–450. https://doi.org/10.1016/j.biortech.2014.05.101

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Tian H, Hu QS, Wang JW, Liu L, Yang Y, Bridgwater AV (2020) Steam gasification of Miscanthus derived char: the reaction kinetics and reactivity with correlation to the material composition and microstructure. Energy Convers Manag 219:113026. https://doi.org/10.1016/j.enconman.2020.113026

    CAS  Article  Google Scholar 

  20. 20.

    Yin YS, Yang BM, Yin J, Tian H, Zhang W, Cheng S, Hu ZM, Xu HF (2020) Kinetic analysis of co-firing of corn stalk and paper sludge using model-fitting and model-free methods. J Energy Resour Technol 142:1–47. https://doi.org/10.1115/1.4045316

    CAS  Article  Google Scholar 

  21. 21.

    Vamvuka D, Salpigidou N, Kastanaki E, Sfakiotakis S (2009) Possibility of using paper sludge in co-firing applications. Fuel 88:637–643. https://doi.org/10.1016/j.fuel.2008.09.029

    CAS  Article  Google Scholar 

  22. 22.

    Vassilev SV, Tascon JMD (2003) Methods for characterization of inorganic and mineral matter in coal: a critical overview. Energy Fuel 17:271–281. https://doi.org/10.1021/ef020113z

    CAS  Article  Google Scholar 

  23. 23.

    Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN (2013) Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. Bioenerg Res 6:830–840. https://doi.org/10.1007/s12155-013-9313-8

    CAS  Article  Google Scholar 

  24. 24.

    Hafid KE, Hajjaji M (2015) Effects of the experimental factors on the microstructure and the properties of cured alkali-activated heated clay. Appl Clay Sci 116-117:202–210. https://doi.org/10.1016/j.clay.2015.03.015

    CAS  Article  Google Scholar 

  25. 25.

    Wang X, Xu XX, Ye Y, Wang C, Liu D, Shi XC, Wang S, Zhu X (2019) In-situ high-temperature XRD and FTIR for calcite, dolomite and Magnesite: Anharmonic contribution to the thermodynamic properties. J Earth Sci-China 30:964–976. https://doi.org/10.1007/s12583-019-1236-7

    CAS  Article  Google Scholar 

  26. 26.

    Arenales Rivera J, Perez Lopez V, Ramos Casado R, Sanchez Hervas JM (2016) Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test. Waste Manag 47:225–235. https://doi.org/10.1016/j.wasman.2015.04.031

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Tsai MY, Wu KT, Huang CC, Lee HT (2002) Co-firing of paper mill sludge and coal in an industrial circulating fluidized bed boiler. Waste Manag 22:439–442. https://doi.org/10.1016/s0956-053x(02)00027-2

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Cai ZL, Ma XQ, Fang SW, Yu ZS, Lin Y (2016) Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Appl Therm Eng 106:938–943. https://doi.org/10.1016/j.applthermaleng.2016.06.088

    CAS  Article  Google Scholar 

  29. 29.

    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. https://doi.org/10.1021/ja01269a023

    CAS  Article  Google Scholar 

  30. 30.

    Calisto V, Ferreira CI, Santos SM, Gil MV, Otero M, Esteves VI (2014) Production of adsorbents by pyrolysis of paper mill sludge and application on the removal of citalopram from water. Bioresour Technol 166:335–344. https://doi.org/10.1016/j.biortech.2014.05.047

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Chowdhury S, Sikder J, Mandal T, Halder G (2019) Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge. Sci Total Environ 665:438–452. https://doi.org/10.1016/j.scitotenv.2019.02.081

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Chen CX, Bu XY, Huang DC, Huang YT, Huang HZ (2020) Thermal decomposition and kinetics analysis of microwave pyrolysis of Dunaliella salina using composite additives. Bioenerg Res 13:1205–1220. https://doi.org/10.1007/s12155-020-10150-7

    CAS  Article  Google Scholar 

  33. 33.

    Zhou LM, Wang YP, Huang QW, Cai JQ (2006) Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process Technol 87:963–969. https://doi.org/10.1016/j.fuproc.2006.07.002

    CAS  Article  Google Scholar 

  34. 34.

    Liu K, Ma XQ, Xiao HM (2010) Experimental and kinetic modeling of oxygen-enriched air combustion of paper mill sludge. Waste Manag 30:1206–1211. https://doi.org/10.1016/j.wasman.2010.03.019

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Malekshahian M, Hill JM (2011) Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke. Energy Fuel 25:5250–5256. https://doi.org/10.1021/ef201231w

    CAS  Article  Google Scholar 

  36. 36.

    Wang GW, Zhang JL, Chang WW, Li RP, Li YJ, Wang C (2018) Structural features and gasification reactivity of biomass chars pyrolyzed in different atmospheres at high temperature. Energy 147:25–35. https://doi.org/10.1016/j.energy.2018.01.025

    CAS  Article  Google Scholar 

  37. 37.

    Tong W, Liu QC, Yang C, Cai ZL, Wu HL, Ren S (2020) Effect of pore structure on CO2 gasification reactivity of biomass chars under high-temperature pyrolysis. J Energy Inst 93:962–976. https://doi.org/10.1016/j.joei.2019.08.007

    CAS  Article  Google Scholar 

  38. 38.

    Mullen CA, Boateng AA (2011) Production and analysis of fast pyrolysis oils from Proteinaceous biomass. Bioenerg Res 4:303–311. https://doi.org/10.1007/s12155-011-9130-x

    Article  Google Scholar 

  39. 39.

    Serapiglia MJ, Cameron KD, Stipanovic AJ, Smart LB (2009) Analysis of biomass composition using high-resolution Thermogravimetric analysis and Percent bark content for the selection of shrub willow bioenergy crop varieties. BioEnerg Res 2:1–9. https://doi.org/10.1007/s12155-008-9028-4

    Article  Google Scholar 

  40. 40.

    Templeton DW, Wolfrum EJ, Yen JH, Sharpless KE (2016) Compositional analysis of biomass reference materials: results from an Interlaboratory study. BioEnerg Res 9:303–314. https://doi.org/10.1007/s12155-015-9675-1

    Article  Google Scholar 

  41. 41.

    Varhegyi G, Antal MJ, Szekely T, Szabo P (1989) Kinetics of the thermal decomposition of cellulose, hemicellulose, and sugarcane bagasse. Energy Fuel 3:329–335. https://doi.org/10.1021/ef00015a012

    CAS  Article  Google Scholar 

  42. 42.

    Charest MH, Antoun H, Beauchamp CJ (2004) Dynamics of water-soluble carbon substances and microbial populations during the composting of de-inking paper sludge. Bioresour Technol 91:53–67. https://doi.org/10.1016/s0960-8524(03)00155-x

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Jiang L, Hu S, Wang Y, Su S, Sun LS, Xu BY, He LM, Xiang J (2015) Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. Int J of Hydrogen Energ 40:15460–15469. https://doi.org/10.1016/j.ijhydene.2015.08.111

    CAS  Article  Google Scholar 

  44. 44.

    Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M (2013) CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts. Bioresour Technol 144:288–295. https://doi.org/10.1016/j.biortech.2013.06.059

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Zhang H, Bai J, Kong L, Li X, Bai Z, Li W (2015) Behavior of minerals in typical Shanxi coking coal during pyrolysis. Energy Fuel 29:6912–6919. https://doi.org/10.1021/acs.energyfuels.5b01191

    CAS  Article  Google Scholar 

  46. 46.

    Xu SQ, Zhou ZJ, Yu GS, Wang FC (2010) Effects of pyrolysis on the pore structure of four Chinese coals. Energy Fuel 24:1114–1123. https://doi.org/10.1021/ef901008a

    CAS  Article  Google Scholar 

  47. 47.

    Masnadi MS, Grace JR, Bi XT, Lim CJ, Ellis N (2015) From fossil fuels towards renewables: inhibitory and catalytic effects on carbon thermochemical conversion during co-gasification of biomass with fossil fuels. Appl Energ 140:196–209. https://doi.org/10.1016/j.apenergy.2014.12.006

    CAS  Article  Google Scholar 

  48. 48.

    Mukherjee S, Srivastava SK (2006) Minerals transformations in Northeastern region coals of India on heat treatment. Energy Fuel 20:1089–1096. https://doi.org/10.1021/ef050155y

    CAS  Article  Google Scholar 

  49. 49.

    Jiang JY, Yang WH, Cheng YP, Liu ZD, Zhang Q, Zhao K (2019) Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: implications for coalification. Fuel 239:559–572. https://doi.org/10.1016/j.fuel.2018.11.057

    CAS  Article  Google Scholar 

  50. 50.

    Kumar R, Bansal V, Badhe RM, Madhira ISS, Sugumaran V, Ahmed S, Christopher J, Patel MB, Basu B (2013) Characterization of Indian origin oil shale using advanced analytical techniques. Fuel 113:610–616. https://doi.org/10.1016/j.fuel.2013.05.055

    CAS  Article  Google Scholar 

  51. 51.

    Yin YS, Yin J, Zhang W, Tian H, Hu ZM, Ruan M, Xu HF, Liu L, Yan XZ, Chen DL (2018) FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes. J Energy Inst 91:389–396. https://doi.org/10.1016/j.joei.2017.02.003

    CAS  Article  Google Scholar 

  52. 52.

    Shillito L, Almond MJ, Wicks K, Marshall LR, Matthews W (2009) The use of FT-IR as a screening technique for organic residue analysis of archaeological samples. Spectrochim Acta A Mol Biomol Spectrosc 72:120–125. https://doi.org/10.1016/j.saa.2008.08.016

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Garcia R, Vigil de la Villa R, Vegas I, Frias M, Sanchez de Rojas MI (2008) The pozzolanic properties of paper sludge waste. Constr Build Mater 22:1484–1490. https://doi.org/10.1016/j.conbuildmat.2007.03.033

    Article  Google Scholar 

  54. 54.

    Madejová J (2001) Baseline studies of the clay minerals society source clays: infrared methods. Clay Clay Miner 49:410–432. https://doi.org/10.1346/ccmn.2001.0490508

    Article  Google Scholar 

  55. 55.

    Yin YS, Yin HX, Wu ZH, Qi CW, Tian H, Zhang W, Hu ZM, Feng LH (2019) Characterization of coals and coal ashes with high Si content using combined second-derivative infrared spectroscopy and Raman spectroscopy. Crystals 9:513. https://doi.org/10.3390/cryst9100513

    CAS  Article  Google Scholar 

  56. 56.

    Saikia N, Bharali DJ, Sengupta P, Bordoloi D, Goswamee RL, Saikia PC, Borthakur PC (2003) Characterization, beneficiation and utilization of a kaolinite clay from Assam, India. Appl Clay Sci 24:93–103. https://doi.org/10.1016/s0169-1317(03)00151-0

    CAS  Article  Google Scholar 

  57. 57.

    Osacky M, Geramian M, Ivey DG, Liu Q, Etsell TH (2013) Mineralogical and chemical composition of petrologic end members of Alberta oil sands. Fuel 113:148–157. https://doi.org/10.1016/j.fuel.2013.05.099

    CAS  Article  Google Scholar 

  58. 58.

    Fernandez-Jimenez A, Palomo A (2005) Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86:207–214. https://doi.org/10.1016/j.micromeso.2005.05.057

    CAS  Article  Google Scholar 

  59. 59.

    Vigil de la Villa R, Frías M, Sánchez de Rojas MI, Vegas I, García R (2007) Mineralogical and morphological changes of calcined paper sludge at different temperatures and retention in furnace. Appl Clay Sci 36:279–286. https://doi.org/10.1016/j.clay.2006.10.001

    CAS  Article  Google Scholar 

  60. 60.

    Shoval S, Beck P (2005) Thermo-FTIR spectroscopy analysis as a method of characterizing ancient ceramic technology. J Therm Anal Calorim 82:609–616. https://doi.org/10.1007/s10973-005-0941-x

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ting Yang from Shiyanjia Lab (www.shiyanjia.com) for the SEM test.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51206012), Excellent Youth Project of Hunan Provincial Department of Education (Grant No. 20B041), International Cooperation Project of Double-First Class (Grant No. 2019IC16), Natural Science Foundation of Hunan Province, China (Grant No. 2020JJ4098; No. 2018JJ3552), Science Foundation of Hunan Provincial Education Department, China (Grant No. 18C0201), Open Fund of Key Laboratory of Renewable Energy Electric-Technology of Hunan Province (Grant No. 2020ZNDL002; No. 2020ZNDL001), Innovative Team of Key Technologies of Energy Conservation, Emission Reduction and Intelligent Control for Power Generation Equipment and System at CSUST, Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. CX20200870), and Postgraduate Scientific Research Innovation Project of CSUST (Grant No. CX2020SS67).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Huixia Yin, Zihan Yuan, and Zihua Wu. The first draft of the manuscript was written by Yanshan Yin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanshan Yin.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Yin, H., Yuan, Z. et al. Study on the Pyrolysis Characteristics, Kinetics and Mineral Transformation of Paper Sludge. Bioenerg. Res. (2021). https://doi.org/10.1007/s12155-021-10248-6

Download citation

Keywords

  • Thermochemical process
  • Biomass
  • Energy
  • Solid wastes