Techno-Economic Evaluation and GHG Emission Assessment of Different Options for Vinasse Treatment and Disposal Aiming at Reducing Transport Expenses and Its Energy Use

Abstract

The vinasse is a polluting effluent generated in large quantities in the ethanol production process, whose disposition is problematic and costly. In this work, the vinasse problem is addressed through a comparison between four alternatives for treating it with energy recovery: (i) concentration in an evaporator system until 25 Brix for volume reduction (CONC); (ii) concentration in an evaporator system until 65 Brix, with subsequent incineration of concentrated vinasse (CONC + INC); (iii) anaerobic biodigestion (BIOD); and anaerobic biodigestion and digestate treatment by membranes (BIOD + MEM). The techno-economic assessment is performed through mass and energy balances, evaluating two configurations of the cogeneration system: considering back-pressure (BPST) and condensing-extraction (CEST) steam turbines, in combination with an economic feasibility evaluation. Furthermore, an evaluation of GHG emission was performed in each case. The BIOD + MEM and CONC cases promoted a significant reduction in effluent volume (53% and 82.8% respectively), while the CONC + INC case practically eliminated the disposal expenses of this effluent. Regarding the cogeneration system, the BIOD case presented the highest bagasse surplus (59.9 kg/t cane) for the BPTS configuration, while the CONC + INC case presented the highest electricity surplus (89.7 kWh/t cane) for the CEST configuration. As for the economic assessment, the cases CONC with BPST, and CONC + INC for both BPTS and CEST presented economic feasibility, while the GHG emission assessment indicates that the BIOD case with BPST is the option with the lowest emissions. A sensitivity analysis was also performed to evaluate eventual variations in market and operating conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Data Availability

Not applicable.

References

  1. 1.

    Sovacool BK (2016) A grounded comparison of energy security in Denmark, Brazil, Bangladesh, and China. In: Krishna-Hensel SF (ed) New Security Frontiers: Critical Energy and the Resource Challenge. Routledge, p 240

  2. 2.

    Ferreira AL, Prado FPA, da Silveira JJ (2009) Flex cars and the alcohol price. Energy Econ 31:382–394. https://doi.org/10.1016/j.eneco.2009.01.007

    Article  Google Scholar 

  3. 3.

    Coelho JM (2017) Presentation regarding EPE and the RenovaBio program [in Portuguese].

  4. 4.

    Freire WJ, Cortez LAB (2000) Vinasse from sugarcane [in Portuguese], 1st edn. Agropecuaria, Guaíba

    Google Scholar 

  5. 5.

    Penatti CP, Donzelli JL (2000) Use of vinasse in the sugarcane field [in Portuguese]. Copersucar, Piracicaba

    Google Scholar 

  6. 6.

    CETESB (2015) Vinasse—criteria and procedures for its application in the agricultural soil [in Portuguese]. São Paulo

  7. 7.

    Madaleno LL, Gomes de Barros V, Kesserling MA, Teixeira JR, Duda RM, Alves de Oliveira R (2020) The recycling of biodigested vinasse in an upflow anaerobic sludge blanket reactor is a feasible approach for the conservation of freshwater in the biofuel ethanol industry. J Clean Prod 121196. https://doi.org/10.1016/j.jclepro.2020.121196

  8. 8.

    Silva AFR, Magalhães NC, Cunha PVM, Amaral MCS, Koch K (2020) Influence of COD/SO42− ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. J Environ Manage 259:110034. https://doi.org/10.1016/j.jenvman.2019.110034

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Nadaleti WC, Lourenço VA, Filho PB, dos Santos GB, Przybyla G (2020) National potential production of methane and electrical energy from sugarcane vinasse in Brazil: A thermo-economic analysis. J Environ Chem Eng 8:103422. https://doi.org/10.1016/j.jece.2019.103422

    CAS  Article  Google Scholar 

  10. 10.

    Pereira IZ, dos Santos IFS, Barros RM, de Castro e Silva HL, Tiago Filho GL, Moni e Silva AP (2020) Vinasse biogas energy and economic analysis in the state of São Paulo, Brazil. J Clean Prod 260:121018. https://doi.org/10.1016/j.jclepro.2020.121018

    Article  Google Scholar 

  11. 11.

    Santos PS, Zaiat M, Oller do Nascimento CA, Fuess LT (2019) Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems? A dual kinetic-energetic assessment. J Clean Prod 240:118005. https://doi.org/10.1016/j.jclepro.2019.118005

    CAS  Article  Google Scholar 

  12. 12.

    Fuess LT, Garcia ML, Zaiat M (2018) Seasonal characterization of sugarcane vinasse: assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion. Sci Total Environ 634:29–40. https://doi.org/10.1016/j.scitotenv.2018.03.326

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Bernal AP, dos Santos IFS, Silva APM, Barros RM, Ribeiro EM (2017) Vinasse biogas for energy generation in Brazil: an assessment of economic feasibility, energy potential and avoided CO2 emissions. J Clean Prod 151:260–271. https://doi.org/10.1016/j.jclepro.2017.03.064

    Article  Google Scholar 

  14. 14.

    Del Nery V, Alves I, Zamariolli Damianovic MHR, Pires EC (2018) Hydraulic and organic rates applied to pilot scale UASB reactor for sugar cane vinasse degradation and biogas generation. Biomass and Bioenergy 119:411–417. https://doi.org/10.1016/j.biombioe.2018.10.002

    CAS  Article  Google Scholar 

  15. 15.

    Lorenzo-Llanes J, Pagés-Díaz J, Kalogirou E, Contino F (2020) Development and application in Aspen Plus of a process simulation model for the anaerobic digestion of vinasses in UASB reactors: Hydrodynamics and biochemical reactions. J Environ Chem Eng 8:103540. https://doi.org/10.1016/j.jece.2019.103540

    CAS  Article  Google Scholar 

  16. 16.

    Santana Junior AE, Duda RM, de Oliveira RA (2019) Improving the energy balance of ethanol industry with methane production from vinasse and molasses in two-stage anaerobic reactors. J Clean Prod 238:117577. https://doi.org/10.1016/j.jclepro.2019.07.052

    CAS  Article  Google Scholar 

  17. 17.

    Santos FS, Ricci BC, França Neta LS, Amaral MCS (2017) Sugarcane vinasse treatment by two-stage anaerobic membrane bioreactor: effect of hydraulic retention time on changes in efficiency, biogas production and membrane fouling. Bioresour Technol 245:342–350. https://doi.org/10.1016/j.biortech.2017.08.126

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Fuess LT, Zaiat M (2018) Economics of anaerobic digestion for processing sugarcane vinasse: Applying sensitivity analysis to increase process profitability in diversified biogas applications. Process Saf Environ Prot 115:27–37. https://doi.org/10.1016/j.psep.2017.08.007

    CAS  Article  Google Scholar 

  19. 19.

    Fuess LT, Klein BC, Chagas MF, Rezende MCAF, Garcia ML, Bonomi A, Zaiat M (2018) Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach. Renew Energy 122:674–687. https://doi.org/10.1016/j.renene.2018.02.003

    CAS  Article  Google Scholar 

  20. 20.

    Fuess LT, de Araújo Júnior MM, Garcia ML, Zaiat M (2017) Designing full-scale biodigestion plants for the treatment of vinasse in sugarcane biorefineries: How phase separation and alkalinization impact biogas and electricity production costs? Chem Eng Res Des 119:209–220. https://doi.org/10.1016/j.cherd.2017.01.023

    CAS  Article  Google Scholar 

  21. 21.

    Fuess LT, Kiyuna LSM, Júnior Ferraz ADN, Persinoti GF, Squina FM, Garcia ML, Zaiat M (2017) Thermophilic two-phase anaerobic digestion using an innovative fixed-bed reactor for enhanced organic matter removal and bioenergy recovery from sugarcane vinasse. Appl Energy 189:480–491. https://doi.org/10.1016/j.apenergy.2016.12.071

    CAS  Article  Google Scholar 

  22. 22.

    Pazuch FA, Nogueira CEC, Souza SNM, Micuanski VC, Friedrich L, Lenz AM (2017) Economic evaluation of the replacement of sugar cane bagasse by vinasse, as a source of energy in a power plant in the state of Paraná, Brazil. Renew Sustain Energy Rev 76:34–42. https://doi.org/10.1016/j.rser.2017.03.047

    Article  Google Scholar 

  23. 23.

    Moraes BS, Petersen SO, Zaiat M, Sommer SG, Triolo JM (2017) Reduction in greenhouse gas emissions from vinasse through anaerobic digestion. Appl Energy 189:21–30. https://doi.org/10.1016/j.apenergy.2016.12.009

    CAS  Article  Google Scholar 

  24. 24.

    de Barros VG, Duda RM, Vantini JS, Omori WP, Ferro MIT, de Oliveira RA (2017) Improved methane production from sugarcane vinasse with filter cake in thermophilic UASB reactors, with predominance of Methanothermobacter and Methanosarcina archaea and Thermotogae bacteria. Bioresour Technol 244:371–381. https://doi.org/10.1016/j.biortech.2017.07.106

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Moraes BS, Zaiat M, Bonomi A (2015) Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew Sustain Energy Rev 44:888–903. https://doi.org/10.1016/j.rser.2015.01.023

    CAS  Article  Google Scholar 

  26. 26.

    Peiter FS, Hankins NP, Pires EC (2019) Evaluation of concentration technologies in the design of biorefineries for the recovery of resources from vinasse. Water Res 157:483–497. https://doi.org/10.1016/j.watres.2019.04.003

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Gomes MT d MS, Eça KS, Viotto LA (2011) Vinasse concentration by microfiltration followed by nanofiltration with membranes [in Portuguese]. Pesquisa Agropecuaria Brasileira 46:633–638. https://doi.org/10.1590/S0100-204X2011000600009

    Article  Google Scholar 

  28. 28.

    Nataraj SK, Hosamani KM, Aminabhavi TM (2006) Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res 40:2349–2356. https://doi.org/10.1016/j.watres.2006.04.022

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Magalhães NC, Silva AFR, Cunha PVM, Drewes JE, Amaral MCS (2020) Role of nanofiltration or reverse osmosis integrated to ultrafiltration-anaerobic membrane bioreactor treating vinasse for the conservation of water and nutrients in the ethanol industry. J Water Process Eng 36:101338. https://doi.org/10.1016/j.jwpe.2020.101338

    Article  Google Scholar 

  30. 30.

    Couto PT, Eng F, Naessens W, Nopens I, Zaiat M, Ribeiro R (2020) Modelling sugarcane vinasse processing in an acidogenic reactor to produce hydrogen with an ADM1-based model. Int J Hydrogen Energy 45:6217–6230. https://doi.org/10.1016/j.ijhydene.2019.12.206

    CAS  Article  Google Scholar 

  31. 31.

    Toledo-Cervantes A, Villafán-Carranza F, Arreola-Vargas J, Razo-Flores E, Méndez-Acosta HO (2020) Comparative evaluation of the mesophilic and thermophilic biohydrogen production at optimized conditions using tequila vinasses as substrate. Int J Hydrogen Energy 45:11000–11010. https://doi.org/10.1016/j.ijhydene.2020.02.051

    CAS  Article  Google Scholar 

  32. 32.

    Fuess LT, Zaiat M, do Nascimento CAO (2019) Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresour Technol 286:121379. https://doi.org/10.1016/j.biortech.2019.121379

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Niz MYK, Etchelet I, Fuentes L, Etchebehere C, Zaiat M (2019) Extreme thermophilic condition: an alternative for long-term biohydrogen production from sugarcane vinasse. Int J Hydrogen Energy 44:22876–22887. https://doi.org/10.1016/j.ijhydene.2019.07.015

    CAS  Article  Google Scholar 

  34. 34.

    Aparicio JD, Benimeli CS, Almeida CA, Polti MA, Colin VL (2017) Integral use of sugarcane vinasse for biomass production of actinobacteria: Potential application in soil remediation. Chemosphere 181:478–484. https://doi.org/10.1016/j.chemosphere.2017.04.107

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Barros LBM, Andrade LH, Drewes JE, Amaral MCS (2019) Investigation of electrodialysis configurations for vinasse desalting and potassium recovery. Sep Purif Technol 229:115797. https://doi.org/10.1016/j.seppur.2019.115797

    CAS  Article  Google Scholar 

  36. 36.

    Croeser N, Babaee S, Naidoo P, Ramjugernath D (2019) Investigation into the use of gas hydrate technology for the treatment of vinasse. Fluid Phase Equilib 492:67–77. https://doi.org/10.1016/j.fluid.2019.02.020

    CAS  Article  Google Scholar 

  37. 37.

    Guerreiro LF, Rodrigues CSD, Duda RM, de Oliveira RA, Boaventura RAR, Madeira LM (2016) Treatment of sugarcane vinasse by combination of coagulation/flocculation and Fenton’s oxidation. J Environ Manage 181:237–248. https://doi.org/10.1016/j.jenvman.2016.06.027

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Nakashima RN, de Oliveira Junior S (2020) Comparative exergy assessment of vinasse disposal alternatives: Concentration, anaerobic digestion and fertirrigation. Renew Energy 147:1969–1978. https://doi.org/10.1016/j.renene.2019.09.124

    Article  Google Scholar 

  39. 39.

    Cortes-Rodríguez EF, Fukushima NA, Palacios-Bereche R, Ensinas AV, Nebra SA (2018) Vinasse concentration and juice evaporation system integrated to the conventional ethanol production process from sugarcane—heat integration and impacts in cogeneration system. Renew Energy 115:474–488. https://doi.org/10.1016/j.renene.2017.08.036

    Article  Google Scholar 

  40. 40.

    Palacios-Bereche MC, Palacios-Bereche R, Nebra SA (2020) Comparison through energy, exergy and economic analyses of two alternatives for the energy exploitation of vinasse. Energy 197:117231. https://doi.org/10.1016/j.energy.2020.117231

    Article  Google Scholar 

  41. 41.

    Fukushima NA, Palacios-Bereche MC, Palacios-Bereche R, Nebra SA (2019) Energy analysis of the ethanol industry considering vinasse concentration and incineration. Renew Energy 142:96–109. https://doi.org/10.1016/j.renene.2019.04.085

    CAS  Article  Google Scholar 

  42. 42.

    Aspentech (2018) Aspen Plus. https://www.aspentech.com/products/engineering/aspen-plus. Accessed 23 Sep 2018

  43. 43.

    Palacios-Bereche MC (2019) Energy and exergy analysis of different processes for the disposition/energy use of vinasse in sugarcane-processing plants [in Portuguese]. Dissertation, Federal University of ABC

  44. 44.

    Citrotec (2012) Vinasse concentration [in Portuguese]. In: 13 SBA—mill in numbers. http://www.stab.org.br/13_sba_palestras/24_citrotec_concentracao_vinhaca.pdf. Accessed 28 Apr 2018

  45. 45.

    Lipnizki F (2010) Membrane process opportunities and challenges in the bioethanol industry. Desalination 250:1067–1069. https://doi.org/10.1016/j.desal.2009.09.109

    CAS  Article  Google Scholar 

  46. 46.

    Ryan D, Gadd A, Kavanagh J, Barton GW (2009) Integrated biorefinery wastewater design. Chem Eng Res Des 87:1261–1268. https://doi.org/10.1016/j.cherd.2009.04.016

    CAS  Article  Google Scholar 

  47. 47.

    Larsson E, Tengberg T (2014) Evaporation of Vinasse: Pilot Plant Investigation and Preliminary Process Design. Chalmers University of Technology

  48. 48.

    Ensinas AV (2008) Thermal integration and thermoeconomic optimisation applied to the sugar and ethanol industrial process from sugarcane [in Portuguese]. Thesis, State University of Campinas

  49. 49.

    Elia Neto A, Shintaku A (2009) Use and reuse of water and effluent generation. In: Handbook of water reuse and conservation in the sugar-energy agro-industry [in Portuguese]. National Agency of Water, Brasília, pp 67–180

    Google Scholar 

  50. 50.

    Elia Neto A, Shintaku A (2009) Good Industrial Practices. In: Handbook of water reuse and conservation in the sugar-energy agro-industry [in Portuguese]. National Agency of Water, Brasília, pp 181–256

    Google Scholar 

  51. 51.

    Salomon K, Lora EES, Rocha MH, Olmo OA (2011) Cost calculations for biogas from vinasse biodigestion and its energy utilization. Sugar Ind 4:217–223

    Article  Google Scholar 

  52. 52.

    Leme RM, Seabra JEA (2017) Technical-economic assessment of different biogas upgrading routes from vinasse anaerobic digestion in the Brazilian bioethanol industry. Energy 119:754–766. https://doi.org/10.1016/j.energy.2016.11.029

    CAS  Article  Google Scholar 

  53. 53.

    Chernicharo CAdeL (2007) Biological Wastewater Treatment Vol.4: Anaerobic Reactors. IWA Publishing, London

  54. 54.

    Peiter FS (2018) Comparative analysis of concentration technologies: designing biorefineries for vinasse resource recovery. Universidade de São Paulo

  55. 55.

    Pizzichini M, Russo C (2001) Water purification-desalination with membrane technology supplied with renewable energy. Ital Natl Agency New Technol Energy Environ 1–10

  56. 56.

    Sánchez Prieto MG (2003) Cogeneration alternatives in the sugar-ethanol industry, Case study [in Portuguese]. Thesis, State University of Campinas

  57. 57.

    Cortes-Rodríguez EF, Nebra SA, Sosa-Arnao JH (2017) Experimental efficiency analysis of sugarcane bagasse boilers based on the first law of thermodynamics. J Braz Soc Mech Sci Eng 39:1033–1044. https://doi.org/10.1007/s40430-016-0590-y

    CAS  Article  Google Scholar 

  58. 58.

    Ensinas AV, Nebra SA, Lozano MA, Serra LM (2007) Analysis of process steam demand reduction and electricity generation in sugar and ethanol production from sugarcane. Energy Convers Manag 48:2978–2987. https://doi.org/10.1016/j.enconman.2007.06.038

    CAS  Article  Google Scholar 

  59. 59.

    Gallego-Ríos JM (2017) Effect of processing conditions on the properties of briquettes produced from residues from the ethanol production: Characterisation and analysis of the thermogravimetric behaviour [in Portuguese]. Dissertation, Federal University of ABC

  60. 60.

    Poveda MMR (2014) Economic and environmental analysis of the vinasse processing with energy use [in Portuguese]. Dissertation, University of São Paulo

  61. 61.

    Carvalho TC de (2010) Reduction of vinasse volume through evaporation process [in Portuguese]. Dissertation, Universidade Estadual Paulista

  62. 62.

    Rein P (2007) Cane Sugar Engineering, 1st edn. Verlag Dr. Albert Bartens KG, Berlin

    Google Scholar 

  63. 63.

    Bejan A, Tsatsaronis G, Moran M (1996) Thermal design and optimization. John Wiley & Sons, New York

    Google Scholar 

  64. 64.

    Banco Central do Brasil (2020) BCB—citizen calculator [in Portuguese]. https://www3.bcb.gov.br/CALCIDADAO/publico/exibirFormCorrecaoValores.do?method=exibirFormCorrecaoValores. Accessed 15 Apr 2020

  65. 65.

    Coinnews Media Group LLC (2020) Inflation calculator | Find US Dollar’s Value from 1913-2020. https://www.usinflationcalculator.com/?fbclid=IwAR349CGW0EpRi2AolhU2okVqTuOrszmOlvFo-n7iP28hifeE8IgjeAoAXhk. Accessed 15 Apr 2020

  66. 66.

    Alioth LLC (2020) €1,000 in 2009 → 2020 | Euro Inflation Calculator. https://www.in2013dollars.com/europe/inflation/2009?amount=1000. Accessed 15 Apr 2020

  67. 67.

    Smith R (2005) Chemical process design and integration. John Wiley & Sons, Ltd, England

    Google Scholar 

  68. 68.

    Barbosa V (2018) Use of vinasse in fertirrigation [in Portuguese]. In EventosSTAB: IRRIGAÇÃO E FERTIRRIGAÇÃO

  69. 69.

    Valladares Linares R, Li Z, Yangali-Quintanilla V, Ghaffour N, Amy G, Leiknes T, Vrouwenvelder JS (2016) Life cycle cost of a hybrid forward osmosis—low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Res 88:225–234. https://doi.org/10.1016/j.watres.2015.10.017

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Chellam S, Serra CA, Wiesner MR (1998) Estimating costs for integrated membrane systems. J Am Water Works Assoc 90:96–104. https://doi.org/10.1002/j.1551-8833.1998.tb08537.x

    CAS  Article  Google Scholar 

  71. 71.

    Lozano MA, Valero A (1993) Theory of the exergetic cost. Energy 18:939–960

    Article  Google Scholar 

  72. 72.

    Simões CLdoN, de Sena MER, de Campos R (2004) Study of the economic feasibility of vinasse concentration through reverse osmosis [in Portuguese]. In: Proceedings of the XXIV Encontro Nacional de Engenharia de Produção. Florianópolis, SC, Brasil, pp 5286–5293

  73. 73.

    Indexmundi (2020) Triple superphosphate—monthly price—commodity prices [in Portuguese]. https://www.indexmundi.com/pt/preços-de-mercado/?mercadoria=superfosfato-triplo&meses=12. Accessed 15 Apr 2020

  74. 74.

    Indexmundi (2020) Potassium chloride—monthly price—commodity prices—price charts, data, and news - IndexMundi. https://www.indexmundi.com/commodities/?commodity=potassium-chloride. Accessed 15 Apr 2020

  75. 75.

    Pina EA, Palacios-Bereche R, Chavez-Rodriguez MF, Ensinas AV, Modesto M, Nebra SA (2017) Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane – Evaluation of different plant configurations. Energy 138:1263–1280. https://doi.org/10.1016/j.energy.2015.06.054

    CAS  Article  Google Scholar 

  76. 76.

    UDOP (2018) TRS values and price of sugarcane per tonne—Consecana of the State of São Paulo [in Portuguese]. São Paulo

  77. 77.

    MME (2018) Decree N°65, February 27, 2018 [in Portuguese]

  78. 78.

    JornalCana (2019) How much does bagasse cost?? Check it out here [in Portuguese]. https://jornalcana.com.br/quanto-custa-o-bagaco-confira-aqui/. Accessed 15 Apr 2020

  79. 79.

    Banco Central do Brasil (2020) Money Exchange [in Portuguese]. https://www4.bcb.gov.br/pec/conversao/conversao.asp. Accessed 15 Apr 2020

  80. 80.

    Rocha MH, Lora EES, Venturini OJ, Escobar JCP, Santos JJCS, Moura AG (2010) Use of the life cycle assessment (LCA) for comparison of the environmental performance of four alternatives for the treatment and disposal of bioethanol stillage. Int Sugar J 112:611–622

    CAS  Google Scholar 

  81. 81.

    Rocha MH (2009) Use of life cycle analysis for comparison of the environmental performance of four alternatives for vinasse treatment [in Portuguese]. Dissertation, Federal University of Itajubá

  82. 82.

    da Silva GSPL (2014) Nitrous oxides emissions factors resulting from vinasse application in sugarcane cultivation [in Portuguese]. Dissertation, State University of Campinas

  83. 83.

    Empresa de Pesquisa Energética - EPE (2020) Summary Report: BEN 2020 - base year 2019 [in Portuguese]. Rio de Janeiro

  84. 84.

    Macedo IdeC, Leal MRLV, da Silva JEAR (2004) Assessment of greenhouse gas emissions in the production and use of fuel ethanol in Brazil. São Paulo

  85. 85.

    Cherubin N (2018) Industrial Technology – Vinasse concentration [in Portuguese]. In: Rev. RPAnews. https://revistarpanews.com.br/tecnologia-industrial-concentracao-de-vinhaca/. Accessed 30 Mar 2020

  86. 86.

    Cortez LAB, Leal MRLV, Nogueira LAH (2019) Sugarcane bioenergy for sustainable development: expanding production in Latin America and Africa, 1st edn. Routledge, New York

    Google Scholar 

  87. 87.

    Prakash K (2017) Vinasse incinerator—a consolidated technology arriving to Brazil

  88. 88.

    Akram M, Tan CK, Garwood R, Thai SM (2015) Vinasse—a potential biofuel—cofiring with coal in a fluidised bed combustor. Fuel 158:1006–1015. https://doi.org/10.1016/j.fuel.2015.06.036

    CAS  Article  Google Scholar 

  89. 89.

    Elia Neto A (2016) Vinasse State of the Art [in Portuguese]. Unica:1–31. https://doi.org/10.1590/S0101-73302005000400018

  90. 90.

    de Bazúa CD, Cabrero MA, Poggi HM (1991) Vinasses biological treatment by anaerobic and aerobic processes: Laboratory and pilot-plant tests. Bioresour Technol 35:87–93. https://doi.org/10.1016/0960-8524(91)90086-Y

    Article  Google Scholar 

  91. 91.

    Budiyono SI, Sumardiono S (2014) Effect of total solid content to biogas production rate from Vinasse. Int J Eng Trans B Appl 27:177–184. https://doi.org/10.5829/idosi.ije.2014.27.02b.02

    CAS  Article  Google Scholar 

  92. 92.

    Barrera EL, Rosa E, Spanjers H, Romero O, De Meester S, Dewulf J (2016) A comparative assessment of anaerobic digestion power plants as alternative to lagoons for vinasse treatment: Life cycle assessment and exergy analysis. J Clean Prod 113:459–471. https://doi.org/10.1016/j.jclepro.2015.11.095

    CAS  Article  Google Scholar 

  93. 93.

    Coelho WLV, da Silva FS, Dallacort R, Carneiro PAV (2016) Analysis of electric power generation potential from residues of the sugarcane sector in the Mato Grosso State in different productive scenarios [in Portuguese]. Revista Brasileira de Energias Renováveis 5:332–351

    Article  Google Scholar 

  94. 94.

    Elaiuy MLC (2016) Anaerobic biodigestion of sugarcane vinasse : a modelling approach of ADM1 and the biodegradation efficiency in the soil [in Portuguese]. Thesis, State University of Campinas

  95. 95.

    Sun L, Smith R (2015) Performance modeling of new and existing steam turbines. Ind Eng Chem Res 54:1908–1915. https://doi.org/10.1021/ie5032309

    CAS  Article  Google Scholar 

  96. 96.

    NovaCana (2016) Energy price rises in free market and encourages generators interested in the long term [in Portuguese]. https://www.novacana.com/n/cogeracao/preco-energia-sobe-mercado-livre-anima-geradoras-longo-prazo-230816/. Accessed 20 Aug 2018

  97. 97.

    NOVACANA (2017) Spot electricity price will remain on the ceiling until the end of November, says CCEE [in Portuguese]. https://www.novacana.com/n/cogeracao/preco-spot-eletricidade-teto-novembro-ccee-031017. Accessed 17 Dec 2018

  98. 98.

    CanaOnline (2016) Sugarcane bagasse price starts to react | Cana Online [in Portuguese]. http://www.canaonline.com.br/conteudo/preco-do-bagaco-de-cana-comeca-a-reagir.html#.W3sFRehKiUk. Accessed 20 Aug 2018

  99. 99.

    MFRURAL (2016) Sugarcane bagasse [in Portuguese]. http://www.mfrural.com.br/detalhe/bagaco-de-cana-de-acucar-174373.aspx. Accessed 20 Aug 2018

  100. 100.

    MFRURAL (2015) Cane bagasse [in Portuguese]. http://www.mfrural.com.br/detalhe/bagaco-de-cana-promocao-espetacular-apenas-69.00-a-tonelada-sul-de-goias.-oferta-192396.aspx. Accessed 20 Aug 2018

  101. 101.

    Santos MAS (2015) What to do with sugarcane bagasse? An approach to the theory of real options applied to ethanol and sugar processing plants in the Piracicaba region [in Portuguese]. Dissertation, Fundação Getúlio Vargas

  102. 102.

    Ushima AH, Franca GP (2018) Emission of chlorine compounds in the combustion, gasification and pyrolysis of sugar cane straw [in Portuguese]. Revista IPT - Tecnologia e Inovação 2:37–47

    Google Scholar 

  103. 103.

    Kabbach LGA (2019) Nutritional Management: the strategy of localized vinasse [in Portuguese]. EventoSTAB - Vinhaça: Produtos Concentração, Distribuição e Impactos nos Processamentos

Download references

Acknowledgements

The authors wish to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Finance Code 001, and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Process PQ 306303/2014-0 and PQ 309588/2019-7) for the researcher fellowship; and for the Research Project Grant (Process 407175/2018-0 and 429938/2018-7).

Funding

The research leading to these results received funding from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES Finance) under Grant Agreements No PQ 306303/2014-0 and PQ 309588/2019-7 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under Grant Agreements No 407175/2018-0 and 429938/2018-7.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milagros Cecilia Palacios-Bereche.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 13 Results of the cogeneration system
Table 14 Exergetic cost results
Table 15 Results of the economic assessment
Table 16 Emissions in each sub-system
Table 17 Results of sensitivity analysis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palacios-Bereche, M.C., Palacios-Bereche, R. & Nebra, S.A. Techno-Economic Evaluation and GHG Emission Assessment of Different Options for Vinasse Treatment and Disposal Aiming at Reducing Transport Expenses and Its Energy Use. Bioenerg. Res. (2021). https://doi.org/10.1007/s12155-021-10247-7

Download citation

Keywords

  • Anaerobic biodigestion
  • Concentration
  • Ethanol
  • Incineration
  • Vinasse