Skip to main content
Log in

A Comparative Study of Maize and Miscanthus Regarding Cell-Wall Composition and Stem Anatomy for Conversion into Bioethanol and Polymer Composites

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Due to an increasing demand for environmentally sustainable products, miscanthus and maize stover represent interesting lignocellulosic resources for conversion into biofuels and biomaterials. The overall purpose was to compare miscanthus and maize regarding cell-wall composition and stem anatomy for conversion into bioethanol and polymer composites using partial least squares regressions. For each of the two crops, six contrasted genotypes were cultivated in complete block design, and harvested. Internodes below the main cob for maize, and on the first aboveground internode for miscanthus, were analyzed for biochemistry and anatomy. Their digestibility was predicted using crop-specific near infrared calibrations, and the mechanical properties were evaluated in stem-based composites. On average, the internode cross-section of miscanthus anatomy was characterized by a thick rind (26.2%) and few but dense pith-bundles (3.5 nb/mm2), while cell-wall constituted 95.2% of the dry matter with high lignin (243.2 mg/g) and cellulose concentrations (439.7 mg/g). Maize internode-anatomy showed large cross-sections (397.5 mm2), pith with the presence of numerous bundles and non-lignified-pith fractions (22.3% of the section). Its cell-wall biochemistry displayed high concentrations of hemicelluloses, galactose, arabinose, xylose, and ferulic acid. Cell-wall, lignin, and cellulose concentrations were positively correlated with rind-fraction and pith-bundle-density, which explained strong mechanical properties as shown in miscanthus. Hemicelluloses, galactose, arabinose, and ferulic acid concentrations were positively correlated with pith fraction and stem cross-section, revealing high digestibility as shown in maize. This underlines interesting traits for further comparative genetic studies, as maize represents a good model for digestibility and miscanthus for composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807. https://doi.org/10.1126/science.1137016

    Article  CAS  PubMed  Google Scholar 

  2. Vermerris W, Saballos A, Ejeta G, Mosier NS, Ladisch MR, Carpita NC (2007) Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci 47:S142–S153. https://doi.org/10.2135/cropsci2007.04.0013IPBS

    Article  Google Scholar 

  3. Gomez LD, Vanholme R, Bird S et al (2014) Side by side comparison of chemical compounds generated by aqueous pretreatments of maize stover, miscanthus and sugarcane bagasse. BioEnergy Res 7:1466–1480. https://doi.org/10.1007/s12155-014-9480-2

    Article  CAS  Google Scholar 

  4. Christian DG, Riche AB, Yates NE (2008) Growth, yield and mineral content of Miscanthus x giganteus grown as a biofuel for 14 successive harvests. Ind Crop Prod 28:320–327. https://doi.org/10.1016/j.indcrop.2008.02.009

    Article  Google Scholar 

  5. Girones J, Vo L, Arnoult S, Brancourt-Hulmel M, Navard P (2016) Miscanthus stem fragment - reinforced polypropylene composites: development of an optimized preparation procedure at small scale and its validation for differentiating genotypes. Polym Test 55:166–172. https://doi.org/10.1016/j.polymertesting.2016.08.023

    Article  CAS  Google Scholar 

  6. Carpita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420. https://doi.org/10.1016/j.tplants.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Hatfield RD, Rancour DM, Marita JM (2017) Grass cell walls: a story of cross-linking. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.02056

  8. Kumar M, Campbell L, Turner S (2016) Secondary cell walls: biosynthesis and manipulation. J Exp Bot 67:515–531. https://doi.org/10.1093/jxb/erv533

    Article  CAS  PubMed  Google Scholar 

  9. Ralph J, Lapierre C, Boerjan W (2019) Lignin structure and its engineering. Curr Opin Biotechnol 56:240–249. https://doi.org/10.1016/j.copbio.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  10. Gallos A, Paes G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv 7:34638–34654. https://doi.org/10.1039/c7ra05240e

    Article  CAS  Google Scholar 

  11. Vo LTT, Girones J, Jacquemot M-P, Legée F, Cézard L, Lapierre C, Hage FE, Méchin V, Reymond M, Navard P (2020) Correlations between genotype biochemical characteristics and mechanical properties of maize stem - polyethylene composites. Ind Crop Prod 143:111925. https://doi.org/10.1016/j.indcrop.2019.111925

    Article  CAS  Google Scholar 

  12. Lorenz AJ, Anex RP, Isci A, et al (2009) Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover. Biotechnol Biofuels 2:. https://doi.org/10.1186/1754-6834-2-5

  13. Zhao H, Li Q, He J, Yu J, Yang J, Liu C, Peng J (2014) Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China. Glob Change Biol BioEnergy 6:768–776. https://doi.org/10.1111/gcbb.12115

    Article  CAS  Google Scholar 

  14. Belmokhtar N, Arnoult S, Chabbert B, Charpentier JP, Brancourt-Hulmel M (2017) Saccharification performances of Miscanthus at the pilot and miniaturized assay scales: genotype and year variabilities according to the biomass composition. Front Plant Sci:8. https://doi.org/10.3389/fpls.2017.00740

  15. De Souza AP, Kamei CLA, Torres AF et al (2015) How cell wall complexity influences saccharification efficiency in Miscanthus sinensis. J Exp Bot 66:4351–4365. https://doi.org/10.1093/jxb/erv183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. El Hage F, Legland D, Borrega N et al (2018) Tissue lignification, cell wall p-coumaroylation and degradability of maize stems depend on water status. J Agric Food Chem 66:4800–4808. https://doi.org/10.1021/acs.jafc.7b05755

    Article  CAS  PubMed  Google Scholar 

  17. Zub HW, Arnoult S, Brancourt-Hulmel M (2011) Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenergy 35:637–651. https://doi.org/10.1016/j.biombioe.2010.10.020

    Article  Google Scholar 

  18. Mechin V, Laluc A, Legee F et al (2014) Impact of the brown-midrib bm5 mutation on maize lignins. J Agric Food Chem 62:5102–5107. https://doi.org/10.1021/jf5019998

    Article  CAS  PubMed  Google Scholar 

  19. Updegraff D (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:420+. https://doi.org/10.1016/S0003-2697(69)80009-6

  20. Harholt J, Jensen J, Sorensen S et al (2006) Arabinan deficient 1 is a putative arabinosyltransferase involved in biosynthesis of Pectic Arabinan in Arabidopsis. Plant Physiol 140:49–58. https://doi.org/10.1104/pp.105.072744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho-Yue-Kuang S, Alvarado C, Antelme S, Bouchet B, Cézard L, le Bris P, Legée F, Maia-Grondard A, Yoshinaga A, Saulnier L, Guillon F, Sibout R, Lapierre C, Chateigner-Boutin AL (2016) Mutation in Brachypodium caffeic acid O-methyltransferase 6 alters stem and grain lignins and improves straw saccharification without deteriorating grain quality. J Exp Bot 67:227–237. https://doi.org/10.1093/jxb/erv446

    Article  CAS  PubMed  Google Scholar 

  22. Virlouvet L, El Hage F, Griveau Y et al (2019) Water deficit-responsive QTLs for cell wall degradability and composition in maize at silage stage. Front Plant Sci 10. https://doi.org/10.3389/fpls.2019.00488

  23. Legland D, El-Hage F, Mechin V, Reymond M (2017) Histological quantification of maize stem sections from FASGA-stained images. Plant Methods 13. https://doi.org/10.1186/s13007-017-0225-z

  24. Luquet D, Perrier L, Clement-Vidal A et al (2019) Genotypic covariations of traits underlying sorghum stem biomass production and quality and their regulations by water availability: insight from studies at organ and tissue levels. Glob Change Biol BioEnergy 11:444–462. https://doi.org/10.1111/gcbb.12571

    Article  CAS  Google Scholar 

  25. Tenhenhaus M (1999) L’approche PLS. Rev Stat Appliquée:5–40

  26. Tenhenhaus M, Gauchi J-P, Ménardo C (1995) Régression PLS et applications. Rev Stat Appliquée:7–63

  27. Jung H, Morrison T, Buxton D (1998) Degradability of cell-wall polysaccharides in maize internodes during stalk development. Crop Sci 38:1047–1051. https://doi.org/10.2135/cropsci1998.0011183X003800040027x

    Article  CAS  Google Scholar 

  28. Mechin V, Argillier O, Menanteau V et al (2000) Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J Sci Food Agric 80:574–580. https://doi.org/10.1002/(SICI)1097-0010(200004)80:5<574::AID-JSFA575>3.0.CO;2-R

    Article  CAS  Google Scholar 

  29. Grabber J, Ralph J, Hatfield R (1998) Ferulate cross-links limit the enzymatic degradation of synthetically lignified primary walls of maize. J Agric Food Chem 46:2609–2614. https://doi.org/10.1021/jf9800099

    Article  CAS  Google Scholar 

  30. Van der Weijde T, Huxley LM, Hawkins S et al (2017) Impact of drought stress on growth and quality of miscanthus for biofuel production. Glob Change Biol BioEnergy 9:770–782. https://doi.org/10.1111/gcbb.12382

    Article  CAS  Google Scholar 

  31. Torres AF, van der Weijde T, Dolstra O, Visser RGF, Trindade LM (2013) Effect of maize biomass composition on the optimization of dilute-acid pretreatments and enzymatic saccharification. BioEnergy Res 6:1038–1051. https://doi.org/10.1007/s12155-013-9337-0

    Article  CAS  Google Scholar 

  32. Huyen TLN, Remond C, Dheilly RM, Chabbert B (2010) Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus. Bioresour Technol 101:8224–8231. https://doi.org/10.1016/j.biortech.2010.05.087

    Article  CAS  Google Scholar 

  33. Kaack K, Schwarz K, Brander P (2003) Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crop Prod 17:131–142. https://doi.org/10.1016/S0926-6690(02)00093-6

    Article  CAS  Google Scholar 

  34. Meineke T, Manisseri C, Voigt CA (2014) Phylogeny in defining model plants for lignocellulosic ethanol production: a comparative study of Brachypodium distachyon, wheat, maize, and Miscanthus x giganteus leaf and stem biomass. PLoS One 9:e103580. https://doi.org/10.1371/journal.pone.0103580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jonkers K (2010) Models and orphans; concentration of the plant molecular life science research agenda. Scientometrics 83:167–179. https://doi.org/10.1007/s11192-009-0024-z

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the staff of the INRAE experimental unit of Estrées-Mons, GCIE Picardie, and in particular, Marie-Chantal Mansard, Marie Heumez-Lévêque, and the students who participated in this work. The authors thank Rebecca James who edited the English text.

Funding

This work has benefited from the support of the programme Investments for the Future (grant ANR-11-BTBR-0006-BFF) managed by the French National Research Agency. The IJPB benefited from the support of IJPB’s Plant Observatory technological platforms as well as the support of the LabEx Saclay Plant Sciences-SPS (ANR-10-LABX-0040-SPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Brancourt-Hulmel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 232 kb)

ESM 2

(PDF 252 kb)

ESM 3

(PDF 213 kb)

ESM 4

(PDF 228 kb)

ESM 5

(PDF 400 kb)

ESM 6

(PDF 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brancourt-Hulmel, M., Arnoult, S., Cézard, L. et al. A Comparative Study of Maize and Miscanthus Regarding Cell-Wall Composition and Stem Anatomy for Conversion into Bioethanol and Polymer Composites. Bioenerg. Res. 15, 777–791 (2022). https://doi.org/10.1007/s12155-020-10239-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10239-z

Keywords

Navigation