Skip to main content

High Saccharification, Low Lignin, and High Sustainability Potential Make Duckweeds Adequate as Bioenergy Feedstocks


Duckweeds are the smallest free-floating aquatic monocots. They have a unique cell wall containing pectin polymers named apiogalacturonan and xylogalacturonan. Knowing that the cell wall composition is essential for duckweeds as a bioenergy feedstock, notably ethanol production, this work reports the five duckweed species’ (Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Wolffiella caudata, and Wolffia borealis) composition and saccharification potential. Nonstructural carbohydrates were, on average, 42% of the dry weight. The cell wall comprises 20.1% pectin and glucomannan, 35.2% hemicelluloses, 30% cellulose, and 5% lignin, and the fermentable sugars in duckweed walls are glucose, galactose, and xylose. Together, these monosaccharides constitute 51.4% of the cell wall. Duckweeds displayed low recalcitrance to hydrolysis, probably due to the low lignin and cellulose contents. Furthermore, the saccharification of the duckweeds was higher than sugarcane, a primary bioethanol feedstock. Results indicate that duckweed biomass displays a high potential as a feedstock for bioethanol production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data Availability

Not applicable.


4M NaOH:

sodium hydroxide four molar


alcohol insoluble residue


ammonium oxalate




high-performance anion-exchange chromatography with pulsed amperometric detection

L. gibba :

Lemna gibba stream DWC128

L. punctata :

Landoltia punctata stream 7624


3-methyl-2-benzothiazolinone hydrazone




Rutgers Duckweed Stock Corporation

S. polyrhiza :

Spirodela polyrhiza stream 9509


trifluoroacetic acid

W. borealis :

Wolffia borealis stream 9144

W. caudata :

Wolffiella caudata stream 9139


  1. 1.

    Soccol CR, Vandenberghe LP de S, Medeiros ABP, et al. (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Hood EE (2016) Plant-based biofuels. F1000Research 5:1–9.

    Article  Google Scholar 

  3. 3.

    de Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res. 7:24–35

    CAS  Article  Google Scholar 

  4. 4.

    Conab (2020) Acompanhamento da safra brasileira: cana-de-açúcar. Safra 2019/20. v.7, n.1, Brasilia, Brazil. pp 1–62

  5. 5.

    Phitsuwan P, Sakka K, Ratanakhanokchai K (2013) Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass and Bioenergy 58:390–405.

    CAS  Article  Google Scholar 

  6. 6.

    Cui W, Cheng JJ (2015) Growing duckweed for biofuel production: a review. Plant Biol 17(Suppl 1):16–23.

    Article  PubMed  Google Scholar 

  7. 7.

    Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L (2012) Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H 2SO 4 pretreatments in Miscanthus. Biotechnol Biofuels 5:58.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Li F, Zhang M, Guo K, Hu Z, Zhang R, Feng Y, Yi X, Zou W, Wang L, Wu C, Tian J, Lu T, Xie G, Peng L (2015) High-level hemicellulosic arabinose predominately affects lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnol J 13:514–525.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Wang YY, Huang J, Li Y, Xiong K, Wang Y, Li F, Liu M, Wu Z, Tu Y, Peng L (2015) Ammonium oxalate-extractable uronic acids positively affect biomass enzymatic digestibility by reducing lignocellulose crystallinity in Miscanthus. Bioresour Technol 196:391–398.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Buckeridge MS (2017) The evolution of the Glycomic Codes of extracellular matrices. BioSystems 164:112–120.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Ivakov AA, Flis A, Apelt F et al (2017) Cellulose synthesis and cell expansion are regulated by different mechanisms in growing Arabidopsis hypocotyls. Plant Cell:tpc.00782.2016.

  13. 13.

    De Souza AP, Kamei CLA, Torres AF et al (2015) How cell wall complexity influences saccharification efficiency in Miscanthus sinensis. J Exp Bot 66:4351–4365.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Avci U, Peña MJ, O’Neill MA (2018) Changes in the abundance of cell wall apiogalacturonan and xylogalacturonan and conservation of rhamnogalacturonan II structure during the diversification of the Lemnoideae. Planta 247:953–971.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Pagliuso D, Grandis A, Igarashi ESES et al (2018) Correlation of apiose levels and growth rates in duckweeds. Front Chem 6:1–10.

    CAS  Article  Google Scholar 

  16. 16.

    Cao HX, Fourounjian P, Wang W (2018) The importance and potential of duckweeds as a model and crop plant for biomass-based applications and beyond. In: Hussain C. (eds). Handbook of Environmental Materials Management. Springer International Publishing, pp 1–16.

  17. 17.

    Soda S, Ohchi T, Piradee J, Takai Y, Ike M (2015) Duckweed biomass as a renewable biorefinery feedstock: ethanol and succinate production from Wolffia globosa. Biomass and Bioenergy 81:364–368.

    CAS  Article  Google Scholar 

  18. 18.

    Zhao X, Moates GKK, Wellner N et al (2014) Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohydr Polym 111:410–418.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Landolt E (1992) Lemnaceae duckweed family. J Arizona-Nevada Acad Sci 26:10–14

    Google Scholar 

  20. 20.

    Les DHD, Crawford DJD, Landolt E et al (2002) Phylogeny and systematics of Lemnaceae, the duckweed family. Syst Bot 27:221–240.

    Article  Google Scholar 

  21. 21.

    Verma R, Suthar S (2015) Utility of duckweeds as source of biomass energy: a review. Bioenergy Res 8:1589–1597.

    CAS  Article  Google Scholar 

  22. 22.

    Xu J, Zhao H, Stomp AM, Cheng JJ (2012) The production of duckweed as a source of biofuels. Biofuels 3:589–601.

    CAS  Article  Google Scholar 

  23. 23.

    Ge X, Zhang N, Phillips GC, Xu J (2012) Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol. Bioresour Technol 124:485–488.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Sowinski EE, Gilbert S, Lam E, Carpita NC (2019) Linkage structure of cell-wall polysaccharides from three duckweed species. Carbohydr Polym 223:115119.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Xu Y, Ma S, Huang M, Peng M, Bog M, Sree KS, Appenroth KJ, Zhang J (2015) Species distribution, genetic diversity and barcoding in the duckweed family (Lemnaceae). Hydrobiologia 743:75–87.

    CAS  Article  Google Scholar 

  26. 26.

    Perniel M, Ruan R, Martinez B (1998) Nutrient removal from a stormwater detection pond using duckweed. Appl Eng Agric 14:605–609.

    Article  Google Scholar 

  27. 27.

    Xiu SN, Shahbazi A, Croonenberghs J, Wang LJ (2010) Oil production from duckweed by thermochemical liquefaction. Energy Sources Part A 32:1293–1300.

    CAS  Article  Google Scholar 

  28. 28.

    Duan P, Zhang C, Wang F, Fu J, Lü X, Xu Y, Shi X (2016) Activated carbons for the hydrothermal upgrading of crude duckweed bio-oil. Catal Today 274:73–81

    CAS  Article  Google Scholar 

  29. 29.

    Arenque BC, Grandis A, Pocius O, de Souza AP, Buckeridge MS (2014) Responses of senna reticulata, a legume tree from the amazonian floodplains, to elevated atmospheric co2 concentration and waterlogging. Trees - Struct Funct 28:1021–1034.

    CAS  Article  Google Scholar 

  30. 30.

    de Souza AP, Leite DCCC, Pattathil S et al (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579.

    CAS  Article  Google Scholar 

  31. 31.

    Filisetti-Cozzi TMCC, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Van Acker R, Vanholme R, Storme V et al (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol Biofuels 6:46.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fukushima RS, Kerley MS (2011) Use of lignin extracted from different plant sources as standards in the spectrophotometric acetyl bromide lignin method. J Agric Food Chem 59:3505–3509.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Xue FC, Chandra R, Berleth T, Beatson RP (2008) Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem 56:6825–6834.

    CAS  Article  Google Scholar 

  35. 35.

    Gomez LD, Whitehead C, Barakate A, Halpin C, McQueen-Mason SJ (2010) Automated saccharification assay for determination of digestibility in plant materials. Biotechnol Biofuels:3.

  36. 36.

    Somerville C, Youngs H, Taylor C et al (2010) Feedstocks for lignocellulosic biofuels. Science (80-. ) 329:790–792

    CAS  Article  Google Scholar 

  37. 37.

    Amorim HV, Lopes ML, De Castro Oliveira JV et al (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275

    CAS  Article  Google Scholar 

  38. 38.

    Hart DA, Kindel PK (1970) Isolation and partial characterization of apiogalacturonans from the cell wall of Lemna minor. Biochem J 116:569–579.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Duff RB (1965) The occurrence of apiose in Lemna (duckweed) and other angiosperms. Biochem J 94:768–772.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Yin Y, Yu C, Yu L, Zhao J, Sun C, Ma Y, Zhou G (2015) The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production. Bioresour Technol 187:84–90.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    DeMartini JD, Pattathil S, Miller JS et al (2013) Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci 6:898.

    CAS  Article  Google Scholar 

  42. 42.

    Zhao X, Moates GK, Wilson DR, Ghogare RJ, Coleman MJ, Waldron KW (2015) Steam explosion pretreatment and enzymatic saccharification of duckweed (Lemna minor) biomass. Biomass and Bioenergy 72:206–215.

    CAS  Article  Google Scholar 

  43. 43.

    Chen Q, Jin Y, Zhang G, Fang Y, Xiao Y, Zhao H (2012) Improving production of bioethanol from duckweed (Landoltia punctata) by pectinase pretreatment. Energies 5:3019–3032.

    CAS  Article  Google Scholar 

  44. 44.

    Yadav D, Barbora L, Bora D, Mitra S, Rangan L, Mahanta P (2017) An assessment of duckweed as a potential lignocellulosic feedstock for biogas production. Int Biodeterior Biodegrad 119:253–259.

    CAS  Article  Google Scholar 

  45. 45.

    Li Q, Song J, Peng S, Wang JP, Qu GZ, Sederoff RR, Chiang VL (2014) Plant biotechnology for lignocellulosic biofuel production. Plant Biotechnol J 12:1174–1192.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Hartt DA, Kindell PK (1969) A novel reaction involved in the degradation of apiogalacturonans from Lemna minor and the isolation of apibiose as a product. Biochemistry 9:2190–2196

    Article  Google Scholar 

  47. 47.

    Su H, Zhao Y, Jiang J, Lu Q, Li Q, Luo Y, Zhao H, Wang M (2014) Use of duckweed (Landoltia punctata) as a fermentation substrate for the production of higher alcohols as biofuels. Energy Fuels 28:3206–3216.

    CAS  Article  Google Scholar 

  48. 48.

    van Maris AJAA, Abbott DA, Bellissimi E et al (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Leeuw Int J Gen Mol Microbiol 90:391–418.

    CAS  Article  Google Scholar 

  49. 49.

    Cunha JT, Soares PO, Romaní A, Thevelein JM, Domingues L (2019) Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol Biofuels 12:20.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE (2018) Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express 8:1–11.

    CAS  Article  Google Scholar 

  51. 51.

    Liu CG, Xiao Y, Xia XX, Zhao XQ, Peng L, Srinophakun P, Bai FW (2019) Cellulosic ethanol production: progress, challenges and strategies for solutions. Biotechnol Adv 37:491–504

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Yu HT, Chen BY, Li BY, Tseng MC, Han CC, Shyu SG (2018) Efficient pretreatment of lignocellulosic biomass with high recovery of solid lignin and fermentable sugars using Fenton reaction in a mixed solvent. Biotechnol Biofuels 11:287.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat Clim Chang 7:788–792.

    Article  Google Scholar 

Download references


The authors gratefully acknowledge Dr. Eny Iochevet Segal Floh for allowing the use of her lab’s facility to cultivate the plants.


This work was supported by the Instituto Nacional de Ciência e Tecnologia do Bioetanol -INCT do Bioetanol (FAPESP/CNPq). DP (CAPES, 88882.377113/2019-1). AG (FAPESP 2019/13936-0). The support by a travel grant to EL by the US Fullbright-Brazil Scholar Mobility Program (2014) to travel to the laboratory of MB to jump-start this Project in 2014-2015 is gratefully acknowledged.

Author information




MB, DP, AG, and EL planned the work; DP performed the experiments; DP and AG analyzed the data; DP, AG, and MB wrote the manuscript.

Corresponding author

Correspondence to Marcos S. Buckeridge.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests

Ethics Approval

Not applicable.

Consent to Participate

All authors from this work consent the participation in this work.

Consent for Publication

All authors consent the research article for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplemental Table 1.

The yield of cell wall fractionation process of Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Wolffiella caudata, and Wolffia borealis concerning initial dry biomass. Values are the average percentage (%) ± standard errors (n=5). Significant differences are shown in bold with distinct letters (p<0.05). The nonstructural carbohydrates represent the biomass extracted with ethanol 80% plus the starch content. AmnOX stands for ammonium oxalate. The recovered cell wall represents the sum of the fractions AmnOx, 4 M NaOH, and residue, while the lost material represents the biomass lost during the fractionation. (PNG 532 kb)

Supplemental Table 2.

The percentage yield of cell wall fractionation process of Spirodela polyrhiza, Landoltia punctata, Lemna gibba, Wolffiella caudata, and Wolffia borealis concerning initial dry biomass. Values are percentage (%) from data of Table 1. L represented the Lemnoideae family and W Wolffioideae family. The nonstructural carbohydrates represent the biomass extracted with ethanol 80% plus the starch content. AmnOX stands for ammonium oxalate. The recovered cell wall represents the sum of the fractions AmnOx, 4 M NaOH, and residue, while the lost material represented the biomass lost during the fractionation (PNG 1660 kb)

High resolution image (TIFF 28 kb)

High resolution image (TIFF 96 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pagliuso, D., Grandis, A., Lam, E. et al. High Saccharification, Low Lignin, and High Sustainability Potential Make Duckweeds Adequate as Bioenergy Feedstocks. Bioenerg. Res. (2020).

Download citation


  • Cell wall
  • Polysaccharides
  • Ethanol
  • Fermentable sugars