Skip to main content

Advertisement

Log in

Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this study, the biomethane potential of five agricultural crop residues (ACRs) (rice straw, vegetable waste, maize straw, coffee husk and oil palm empty fruit bunches (OPEFB)) and five Fruit-Based Agro-Industrial Wastes (FBAIWs) (jackfruit straw, banana, orange, apple and pineapple peel waste) were evaluated. The carbon and energy balance for each waste was also theoretically modelled for two biogas conversion scenarios (anaerobic digestion (AD) with CHP or biogas upgrading). A standard biomethane potential test (BMP) was operated over 30 days at 37 °C. Specific methane potential (SMP) of FBAIWs was generally higher than that of the ACRs, except for vegetable waste. Vegetable waste was identified as having the highest SMP (0.420 m3 kg−1 volatile solids (VS)added). With respect to ACRs, OPEFB and coffee husk had the lowest SMP values of 0.185 and 0.181 m3 kg−1 VSadded, respectively. This was attributed to the higher lignin content of these wastes which can impact on biodegradation and subsequent biogas production. Theoretical estimations showed a positive energy balance for all wastes tested. In terms of exportable energy, apple peel waste was shown to have the highest exportable energy potential. The FBAIWs also exhibited greater emissions savings than ACRs (with the exception of vegetable waste). This study concluded that there is good potential to valorise these wastes using AD and that this could address the challenges of waste management and clean energy provision in Indonesia.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. MEMR (2016) Perkembangan Penyediaan dan Pemanfaatan Migas Batubara Energi Baru Terbarukan dan Listrik (Development provision and utilisation of fossil fuels, coal, renewable energy and electricity). Jakarta

  2. Azam M, Khan AQ, Zaman K, Ahmad M (2015) Factors determining energy consumption: evidence from Indonesia, Malaysia and Thailand. Renew Sust Energ Rev 42:1123–1131. https://doi.org/10.1016/j.rser.2014.10.061

    Article  Google Scholar 

  3. Khalil M, Berawi MA, Heryanto R, Rizalie A (2019) Waste to energy technology: the potential of sustainable biogas production from animal waste in Indonesia. Renew Sust Energ Rev 105:323–331. https://doi.org/10.1016/j.rser.2019.02.011

    Article  Google Scholar 

  4. Indrawan N, Thapa S, Wijaya ME, Ridwan M, Park DH (2018) The biogas development in the Indonesian power generation sector. Environ Dev 25:85–99. https://doi.org/10.1016/j.envdev.2017.10.003

    Article  Google Scholar 

  5. Simangunsong BCH, Sitanggang VJ, Manurung EGT, Rahmadi A, Moore GA, Aye L, Tambunan AH (2017) Potential forest biomass resource as feedstock for bioenergy and its economic value in Indonesia. Forest Policy Econ 81:10–17. https://doi.org/10.1016/j.forpol.2017.03.022

    Article  Google Scholar 

  6. Taylor R, Devisscher T, Silaenb M, Yuwono Y, Ismail C (2019) Risks, barriers and responses to Indonesia’s biogas development

  7. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1–15. https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  8. Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z (2018) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manag 227:395–405. https://doi.org/10.1016/j.jenvman.2018.08.069

    Article  CAS  Google Scholar 

  9. Rico X, Gullón B, Alonso JL, Yáñez R (2020) Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: an overview. Food Res Int 132:1–21. https://doi.org/10.1016/j.foodres.2020.109086

    Article  CAS  Google Scholar 

  10. Ugwuanyi JO, McNeil B, Harvey LM (2009) Production of protein-enriched feed using agro-industrial residues as substrates. In: Nee’Nigam PS, Pandey A (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht, pp 77–103

    Chapter  Google Scholar 

  11. Jirapornvaree I, Suppadit T, Popan A (2017) Use of pineaple waste for production of decomposable pots. Int J Recycl Org Waste Agric 6:345–350. https://doi.org/10.1007/s40093-017-0183-5

    Article  Google Scholar 

  12. Bardiya N, Somayaji D, Khanna S (1996) Biomethanation of banana peel and pineapple waste. Bioresour Technol 58:73–76. https://doi.org/10.1016/S0960-8524(96)00107-1

    Article  CAS  Google Scholar 

  13. Gunaseelan VN (2004) Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass Bioenergy 26:389–399. https://doi.org/10.1016/j.biombioe.2003.08.006

    Article  CAS  Google Scholar 

  14. Indonesian Directorate General of Estate (2020) Palm oil production by province in Indonesia, 2015-2019

  15. Woong ED, Razali AK, Kawai S (2000) Zero emissions in palm oil industry: case study of East Oil Mill Golden Hope Plantation Bhd., Malaysia. In: Proceeding of the third International Wood Science Symposium. pp 153–156

  16. BPS-Statistics Indonesia (2020) Statistical Yearbook of Indonesia 2020. Jakarta

  17. Ministry of Agriculture Republic Indonesia (2018) Outlook Jagung Komoditas Pertanian Subsektor Tanaman Pangan. Jakarta

  18. Rohmah WG, Firmansyah B, Effendi M, Sucipto (2019) Applying response surface methodology to optimise maize silage making for cattle feed. Adv Food Sci Sustain Agric Agroindustrial Eng 2:21–29. https://doi.org/10.21776/ub.afssaae.2019.002.01.4

    Article  Google Scholar 

  19. Harsono SS, Dila R, Mel M (2019) Coffee husk biopellet characteristics as solid fuels for combustion stove. J Environ Sci Curr Res 2:1–6

    Article  Google Scholar 

  20. Agustono B, Lamid M, Ma’ruf A, Purnama MTE (2017) Identification of agricultural and plantation byproducts as inconventional feed nutrition in Banyuwangi. J Med Vet 1:12–22. https://doi.org/10.20473/jmv.vol1.iss1.2017.12-22

    Article  Google Scholar 

  21. Ruffino B, Fiore S, Roati C, Campo G, Novarino D, Zanetti M (2015) Scale effect of anaerobic digestion tests in fed-batch and semi-continuous mode for the technical and economic feasibility of a full scale digester. Bioresour Technol 182:302–313. https://doi.org/10.1016/j.biortech.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  22. Taricska JR, Long DA, Chen JP, Hung YT, Zou SW (2009) Anaerobic digestion. In: Wang LK, Pereira NC, Hung YT (eds) Biological treatment processes. In: Handbook of environmental engineering, 8th edn. Humana Press, Totowa, pp 589–634

  23. dos Santos LA, Valença RB, da Silva LCS, de Barros Holanda SH, da Silva AFV, Jucá JFT, Santos AFMS (2020) Methane generation potential through anaerobic digestion of fruit waste. J Clean Prod 256:1–10. https://doi.org/10.1016/j.jclepro.2020.120389

    Article  CAS  Google Scholar 

  24. Jensen PD, Ge H, Batstone DJ (2011) Assessing the role of biochemical methane potential tests in determining anaerobic degradability rate and extent. Water Sci Technol 64:880–886. https://doi.org/10.2166/wst.2011.662

    Article  CAS  PubMed  Google Scholar 

  25. Koch K, Hefner SD, Weinrich S, Astals S, Holliger C (2020) Power and limitations of biochemical methane potential (BMP) tests. Front Energy Res 8:1–4. https://doi.org/10.3389/fenrg.2020.00063

    Article  Google Scholar 

  26. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jenicek P, Van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59:927–934. https://doi.org/10.2166/wst.2009.040

    Article  CAS  PubMed  Google Scholar 

  27. Suhartini S, Hidayat N, Nurika I (2020) Evaluation of biogas potential from empty fruit oil palm bunches. In: IOP Conference Series: Earth Environ Sci, 443. pp 1–9

  28. Chala B, Oechsner H, Müller J (2019) Introducing temperature as variable parameter into kinetic models for anaerobic fermentation of coffee husk, pulp and mucilage. Appl Sci 9:2–15. https://doi.org/10.3390/app9030412

    Article  CAS  Google Scholar 

  29. Chen Y, Zhao Z, Zou H, Yang H, Sun T, Li M, Chai H, Li L, Ai H, Shi D, He Q (2019) Digestive performance of sludge with different crop straws in mesophilic anaerobic digestion. Bioresour Technol 289:1–11. https://doi.org/10.1016/j.biortech.2019.121595

    Article  CAS  Google Scholar 

  30. Strömberg S, Nistor M, Liu J (2014) Toward eliminating systematic errors caused by the experimental condition in biochemical methane potential (BMP) tests. Waste Manag 34:1939–1948. https://doi.org/10.1016/j.wasman.2014.07.018

    Article  PubMed  Google Scholar 

  31. Suhartini S, Heaven S, Zhang Y, Banks C (2019) Antifoam, dilution and trace element addition as foaming control strategies in mesophilic anaerobic digestion of sugar beet pulp. Int Biodeterior Biodegrad 145:1–13. https://doi.org/10.1016/j.ibiod.2019.104812

    Article  Google Scholar 

  32. Salter A, Banks CJ (2009) Establishing an energy balance for crop-based digestion. Water Sci Technol 59:1053–1060. https://doi.org/10.2166/wst.2009.048

    Article  CAS  PubMed  Google Scholar 

  33. APHA (2005) Standard Methods for the Examination of Water and Wastewater. Washington D.C.

  34. Buswell AM, Mueller HF (1952) Mechanisms of methane fermentation. Ind Eng Chem 44:550–552. https://doi.org/10.1021/ie50507a033

    Article  CAS  Google Scholar 

  35. Omulo G, Banadda N, Kabenge I, Seay J (2019) Optimising slow pyrolisis of banana peels wastes using response surface methodology. Environ Eng Res 24:354–361. https://doi.org/10.4491/eer.2018.269

    Article  Google Scholar 

  36. Alves JLF, Da Silva JCG, Mumbach GD, Di Domenico M, da Silva Filho VF, De Sena RF, Machado RAF, Marangoni C (2020) Insights into the bioenergy potential of jackfruit wastes considering their physicochemical properties, bioenergy indicators, combustion behaviors, and emission characteristics. Renew Energy 155:1328–1338. https://doi.org/10.1016/j.renene.2020.04.025

    Article  CAS  Google Scholar 

  37. Asquer C, Agata P, Efisio AS (2013) Characterization of fruit and vegetable wastes as a single substrate for the anaerobic digestion. Environ Eng Manag J 12:89–92

    Google Scholar 

  38. Fraenkel JR, Wallen N, Hyun H (2006) Hot to design and evaluate research in education. McGraw-Hill, Inc., New York

  39. Suksong W, Wongfaed N, Sangsri B, Kongjan P, Prasertsan P, Podmirseg SM, Insam H, Sompong O (2020) Enhanced solid-state biomethanisation of oil palm empty fruit bunches following fungal pretreatment. Ind Crop Prod 145:1–9. https://doi.org/10.1016/j.indcrop.2020.112099

    Article  CAS  Google Scholar 

  40. Umeghalu ICE, Okonkwo IF, Ngini JO, Okoye CC (2015) Performance evaluation of biogas yield from jackfruit waste co-digestion with cow paunch and poultry droppings in batch mode. Int J Agric Biosci 4:35–37

    Google Scholar 

  41. Zheng W, Phoungthong K, Lü F, Shao LM, He P (2013) Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manag 33:2632–2640. https://doi.org/10.1016/j.wasman.2013.08.015

    Article  CAS  PubMed  Google Scholar 

  42. Gelegenis J, Georgakakis D, Angelidaki I, Mavris V (2007) Optimization of biogas production by co-digesting whey with diluted poultry manure. Renew Energy 32:2147–2160. https://doi.org/10.1016/j.renene.2006.11.015

    Article  CAS  Google Scholar 

  43. Cioabla AE, Ionel I, Dumitrel G, Popescu F (2012) Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels 5:1–9. https://doi.org/10.1186/1754-6834-5-39

    Article  Google Scholar 

  44. Mancini G, Papirio S, Lens PN, Esposito G (2018) Increased biogas production from wheat straw by chemical pretreatments. Renew Energy 119:608–614. https://doi.org/10.1016/j.renene.2017.12.045

    Article  CAS  Google Scholar 

  45. Chynoweth DP, Owens JM, Legrand R (2001) Renewable methane from anaerobic digestion of biomass. Renew Energy 22:1–8. https://doi.org/10.1016/S0960-1481(00)00019-7

    Article  CAS  Google Scholar 

  46. Ahmed AMS, Buezo KA, Saady NMC (2018) Adapting anaerobic consortium to pure and complex lignocellulose substrates at low temperature: kinetics evaluation. Int J Recycl Org Waste Agric 8:99–110. https://doi.org/10.1007/s40093-018-0238-2

    Article  Google Scholar 

  47. Holliger C, Fruteau de Laclos H, Hack G (2017) Methane production of full-scale anaerobic digestion plants calculated from substrate’s biomethane potentials compares well with the one measured on-site. Front Energy Res 5:1–9. https://doi.org/10.3389/fenrg.2017.00012

    Article  Google Scholar 

  48. Barbot YN, Thomsen C, Thomsen L, Benz R (2015) Anaerobic digestion of laminaria japonica waste from industrial production residues in laboratory- and pilot-scale. Mar Drugs 13:5947–5975. https://doi.org/10.3390/md13095947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bres P, Beily ME, Young BJ, Gasulla J, Butti M, Crespo D, Candal R, Komilis D (2018) Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: A bench scale study. Waste Manag 82:276–284. https://doi.org/10.1016/j.wasman.2018.10.041

    Article  CAS  PubMed  Google Scholar 

  50. Edwiges T, Frare LM, Lima Alino JH, Triolo JM, Flotats X, Silva de Mendonça Costa MS (2020) Methane potential of fruit and vegetable waste: an evaluation of the semi-continuous anaerobic mono-digestion. Environ Technol 41:921–930. https://doi.org/10.1080/09593330.2018.1515262

    Article  CAS  PubMed  Google Scholar 

  51. Menardo S, Balsari P (2012) An analysis of the energy potential of anaerobic digestion of agricultural by-products and organic waste. BioEnergy Res 5:759–767. https://doi.org/10.1007/s12155-012-9188-0

    Article  Google Scholar 

  52. Le Hyaric R, Chardin C, Benbelkacem H, Bollon J, Bayard R, Escudié R, Buffière P (2011) Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresour Technol 102:822–827. https://doi.org/10.1016/j.biortech.2010.08.124

    Article  CAS  PubMed  Google Scholar 

  53. Nieves DC, Karimi K, Horváth IS (2011) Improvement of biogas production from oil palm empty fruit bunches (OPEFOPB). Ind Crop Prod 34:1097–1101. https://doi.org/10.1016/j.indcrop.2011.03.022

    Article  CAS  Google Scholar 

  54. Eastren Research Group I and WI (2015) Resource assessment for livestock and agro-industrial wastes-Indonesia

Download references

Funding

The authors would like to thank Universitas Brawijaya for funding support through World Class University (WCU) Research Grant in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sri Suhartini.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest. All author agreed to submit the paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhartini, S., Nurika, I., Paul, R. et al. Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues. Bioenerg. Res. 14, 844–859 (2021). https://doi.org/10.1007/s12155-020-10209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10209-5

Keywords

Navigation