Skip to main content

Advertisement

Log in

Optimization of Chemical Pretreatments Using Response Surface Methodology for Second-Generation Ethanol Production from Coffee Husk Waste

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Within the strategies of substitution of energy from fossil fuels by renewable energies, the research is based on second-generation ethanol production (2G ethanol). One of the raw materials considered for this is residual biomass of the coffee industry, being the subject of study here. The cellulose contained in the coffee husk (coffee husk or coffee skin or coffee exocarp or pericarp) was maximized using pretreatment processes. In dilute acid hydrolysis (DAH), using a fixed 1:6 w:v solid to liquid ratio (SLR), process times (35, 45, 55 min) and H2SO4 concentrations (3, 4, 5% v/v) were evaluated, achieving 53.63% hemicellulose removal. A delignification process resulted in 58.82% lignin removal, evaluating the effect of process times (30, 35, 40 h) and SLR (1:8, 1:10, 1:12 w:v) at a fixed concentration of 8% v/v H2O2. A 115.59 g/L glucose concentration was obtained with an interaction of fixed concentrations of 4–6% w/w Cellic CTec3 enzyme and 6:1 to 1:12 v:w SLR. The fermentation process considered the composition variation of the culture medium (enriched culture C1 and non-enriched culture C2), generating ethanol at 48.19 and 29.02 g/L concentrations, respectively. Fermentation efficiency (ηf) was improved from 21.99 to 81.74% with the addition of inorganic nutrients (KH2PO4, (NH4)2SO4, and MgSO4·7H2O). These results confirmed that the optimization of the pretreatments in coffee husk waste favored the cellulose production and facilitated the enzymatic process to produce a high glucose concentration, revealing these residues as a carbon source promising for second-generation ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shankar K, Kulkarni NS, Jayalakshmi SK, Sreeramulu K (2019) Saccharification of the pretreated husks of corn, peanut and coffee cherry by the lignocellulolytic enzymes secreted by Sphingobacterium sp. ksn for the production of bioethanol. Biomass Bioenergy 127:105298. https://doi.org/10.1016/j.biombioe.2019.105298

    Article  CAS  Google Scholar 

  2. Ebrahimi M, Villaflores OB, Ordono EE, Caparanga AR (2018) Effects of acidified aqueous glycerol and glycerol carbonate pretreatment of rice husk on the enzymatic digestibility, structural characteristics, and bioethanol production. Bioresour Technol 228:264–271. https://doi.org/10.1016/j.biortech.2016.12.106

    Article  CAS  Google Scholar 

  3. Rosales-Calderon O, Arantes V (2019) A review on commercial-scale high-value products that can be produced alongside cellulosic etanol. Biotechnol Biofuels 12:1–58. https://doi.org/10.1186/s13068-019-1529-1

    Article  CAS  Google Scholar 

  4. Villa MAC, da Silva MRC, Palladino DT, Borin CV, Kimiko SI, Maia OV, Luiz SE, Amancio VMB (2019) Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. Int J Hydrogen Energy 44:21434–21450. https://doi.org/10.1016/j.ijhydene.2019.06.115

    Article  CAS  Google Scholar 

  5. Chandel AK, Albarelli JQ, Santos DT, Chundawat SPS, Puri M, Meireles MAA (2019) Comparative analysis of key technologies for cellulosic etanol production from Brazilian sugarcane bagasse at a commercial scale. In: Modeling and Analysis. Society of Chemical Industry and John Wiley and Sons, Ltd, New York. https://doi.org/10.1002/bbb.1990

    Chapter  Google Scholar 

  6. Atabani AE, Al-Muhtaseb A’a H, Kumar G, Saratale GD, Aslam M, Khan HA, Said Z, Mahmoud E (2019) Valorization of spent coffee grounds into biofuels and value-added products: pathway towards integrated bio-refinery. Fuel 254:115640. https://doi.org/10.1016/j.fuel.2019.115640

    Article  CAS  Google Scholar 

  7. Mussatto SI, Machado EMS, Martines S, Teixeira JA (2011) Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol 4:661–672. https://doi.org/10.1007/s11947-011-0565-z

    Article  CAS  Google Scholar 

  8. Cruz R, Cardoso MM, Fernandes L, Oliveira M, Mendes E, Baptista P, Morais S, Casal S (2012) Espresso coffee residues: a valuable source of unextracted compounds. J Agric Food Chem 60(32):7777–7784. https://doi.org/10.1021/jf3018854

    Article  CAS  PubMed  Google Scholar 

  9. Jiménez-Zamora A, Pastoriza S, Rufián-Henares J (2015) Revalorization of coffee byproducts. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci Technol 61(1):12–18. https://doi.org/10.1016/j.lwt.2014.11.031

    Article  CAS  Google Scholar 

  10. Dahiya S, Kumar AN, Shanthi SJ, Chatterjee S, Sarkar O, Mohan SV (2016) Food waste biorefinery: sustainable strategy for circular bioeconomy. Bioresour Technol 215:2–12. https://doi.org/10.1016/j.biortech.2017.07.176

    Article  CAS  Google Scholar 

  11. Zabaniotou A, Kamaterou P, Kachrimanidou V, Vlysidis A, Koutinas A (2017) Taking a reflexive TRL2-4 approach to sustainable use of sunflower meal for the transition from a mono-process pathway to a cascade bio refinery in the context of circular bio-economy. J Clean Prod 172:4119–4129. https://doi.org/10.1016/j.jclepro.2017.01.151

    Article  CAS  Google Scholar 

  12. Silva JPA, Mussatto SI, Roberto IC (2010) The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipites from rice straw hemicellulosic hydrolysate. Biotechnol Appl Biochem 162:1306–1315. https://doi.org/10.1007/s12010-009-8867-6

    Article  CAS  Google Scholar 

  13. Murthy K, Gowrishankar BS, Chandra PMN, Kruthi M (2019) Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchem J 146:192–201. https://doi.org/10.1016/j.microc.2018.12.067

    Article  CAS  Google Scholar 

  14. Collazo-Bigliardi S, Ortega-Toro R, Chiralt (2019) Improving properties of thermoplastic starch films by incorporating active extracts and cellulose fibres isolated from rice or coffee husk. Food Packag Shelf 22:100383. https://doi.org/10.1016/j.fpsl.2019.100383

    Article  Google Scholar 

  15. ICO (2020) International coffee organization. available at: http://www.ico.org. Accessed 31 July 2020

  16. Anastopoulos I, Karamesouti M, Mitropoulos AC, Kyzas GZ (2017) A review for coffee adsorbents. J Mol Liq 229:555–565. https://doi.org/10.1016/j.molliq.2016.12.096

    Article  CAS  Google Scholar 

  17. Kulandáivelu V, Bhat R (2012) Changes in the physico-chemical and biological quality attributes of soil following amendment with untreated coffee processing wastewater. Eur J Soil Biol 50:39–43. https://doi.org/10.1016/j.ejsobi.2011.11.011

    Article  CAS  Google Scholar 

  18. Thenepallim T, Ramakrishna C, Ahn JW (2017) Environmental effect of the coffee waste and antimicrobial property of oyster shell waste treatment. J Energy Eng 26(2):29–49. https://doi.org/10.5855/ENERGY.2017.26.2.097

    Article  Google Scholar 

  19. Fernandes AS, Mello FVC, Filho TS, Carpes RM, Honório JG, Marques MRC, Felzenszwalb I, Ferraz ERA (2017) Impacts of discarded coffee waste on human and environmental health. Ecotoxicol Environ Saf 141:30–36. https://doi.org/10.1016/j.ecoenv.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  20. Gouvea BM, Torres C, Franca AS, Oliveira LS, Oliveira ES (2009) Feasibility of ethanol production from coffee husks. Biotechnol Lett 31:1315–1319. https://doi.org/10.1007/s10529-009-0023-4

    Article  CAS  PubMed  Google Scholar 

  21. Franca AS, Oliveira LS (2009) Coffee processing solid wastes: current uses and future perspectives. In: Columbus F (ed) Agricultural wastes. Nova Publishers, New York http://www.sciencedirect.com/science/journal/01414607. Accessed 5 Aug 2020

  22. Choi IS, Wi SG, Kim SB, Bae HJ (2019) Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour Technol 125:132–137. https://doi.org/10.1016/j.biortech.2012.08.080

    Article  CAS  Google Scholar 

  23. Leifa F, Pandey A, Soccol CR (2000) Solid state cultivation – an efficient method to use toxic agro-industrial residues. J Basic Microbiol 40:187–197. https://doi.org/10.1002/1521-4028(200007)40:3<187::AID-JOBM187>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  24. Oosterveld A, Voragen AGJ, Schols HA (2003) Effect of roasting on the carbohydrate composition of Coffea arabica beans. Carbohydr Polym 54:183–192. https://doi.org/10.1016/S0144-8617(03)00164-4

    Article  CAS  Google Scholar 

  25. Zhao C, Cao Y, Ma Z, Shao Q (2017) Optimization of liquid ammonia pre-treatment conditions for maximizing sugar release from gaint reed (Arundo donax L.). Biomass Bioenergy 98:61–69. https://doi.org/10.1016/j.biombioe.2017.01.001

    Article  CAS  Google Scholar 

  26. Yen WJ, Wang BS, Chang LW, Duh PD (2005) Antioxidant properties of roasted coffee residues. J Agric Food Chem 53:2658–2663. https://doi.org/10.1021/jf0402429

    Article  CAS  PubMed  Google Scholar 

  27. Nunes AA, Franca AS, Oliveira LS (2009) Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Bioresour Technol 100:1786–1792. https://doi.org/10.1016/j.biortech.2008.09.032

    Article  CAS  PubMed  Google Scholar 

  28. Ob-eye J, Praserthdam P, Jongsomjit B (2019) Ethanol dehydrogenation to acetaldehyde over activated carbons-derived from coffee residue. Bull Chem React Eng Catal 14(2):268–282. https://doi.org/10.9767/bcrec.14.2.3335.268-282

    Article  CAS  Google Scholar 

  29. Campos-Vega R, Loarca-Pina G, Vergara-Castaneda HA, Oomah BD (2015) Spent coffee grounds: a review on current research and future prospects. Trends Food Sci Technol 45:24–36. https://doi.org/10.1016/j.tifs.2015.04.012

    Article  CAS  Google Scholar 

  30. Zabaniotou A, Kamaterou P (2019) Food waste valorization advocating circular bioeconomy -a critical review of potentialities and perspectives of spent coffee grounds biorefinery. J Clean Prod 211:1553–1566. https://doi.org/10.1016/j.jclepro.2018.11.230

    Article  CAS  Google Scholar 

  31. Villa MAC, da Silva MRA, Palladino DT, Borin CVB, Kimiko SI, de Oliveira VM, Silva EL, Amancio VMB (2019) Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. Int J Hydrog Energy 44:1434–2145. https://doi.org/10.1016/j.ijhydene.2019.06.115

    Article  CAS  Google Scholar 

  32. Redgwell RJ, Trovato V, Curti D, Fischer M (2002) Effect of roasting on degradation and structural features of polysaccharides in Arabica coffee beans. Carbohydr Res 337:421–431. https://doi.org/10.1016/S0008-6215(02)00010-1

    Article  CAS  PubMed  Google Scholar 

  33. Jin M, Sousa C, Schwartz C, He Y, Sarks C, Gunawan C, Balan V, Dale BE (2016) Towards lower cost cellulosic biofuel production using ammonia based pretreatment technologies. Green Chem 18:957–966. https://doi.org/10.1039/C5GC02433A

    Article  CAS  Google Scholar 

  34. da Costa SL, Jina M, Chundawat S, Bokade V, Tang X, Azarpira A, Lu F, Avci U, Humpula J, Uppugundla N, Gunawan C, Pattathil S, Cheh A, Kothari N, Kumar R, Ralph J, Hahn GM, Wyman EC, Singh S, Simmons AB, Bruce E, Dale EB, Balan V (2015) Next-generation ammonia pretreatment enhances biofuel production from biomass via simultaneous cellulose decrystallization and lignin extraction. Energy Environ Sci 9:1215–1223. https://doi.org/10.1039/C5EE03051J

    Article  Google Scholar 

  35. Zhang H, Li N, Pan X, Wu S, Xie J (2016) Oxidative conversion of glucose to gluconic acid by iron (III) chloride in water under mild conditions. Green Chem 18:2308–2312. https://doi.org/10.1039/C5GC02614H

    Article  CAS  Google Scholar 

  36. Zhao C, Cao Y, Ma Z, Shao Q (2017) Optimization of liquid ammonia pre-treatment conditions for maximizing sugar release from gaint reed (Arundo donax L.). Biomass Bioenergy 98(2):61–69. https://doi.org/10.1016/j.biombioe.2017.01.001

    Article  CAS  Google Scholar 

  37. Guarneros FJ, Aguilar-Uscanga MG, Morales-Martínez JL, López-Zamora L (2019) Maximization of fermentable sugar production from sweet sorghum bagasse (dry and wet bases) using response surface methodology (RSM). Biomass Convers Bioref 9:633–639. https://doi.org/10.1007/s13399-018-00366-1

    Article  CAS  Google Scholar 

  38. Giorgio EM, Morales A, Congost G, Fonseca MI, Abate C, Zapata PD, Villalba LL (2013) Laboratory evaluation of a submerged system production of endo-l.4-p-glucanase secreted for two strains of white rot fungi. Rev Cien Technol 19:18–23. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-75872013000100003&lng=en&nrm=iso&tlng=es.  Accesed 6 Aug 2020

  39. Guarnizo FA, Martínez YPN, Valencia SHA (2009) Cellulose and biomass pretreatment for saccharification. Sci Sci 42(2):284–289. https://doi.org/10.22517/23447214.2655

    Article  Google Scholar 

  40. Menezes EGT, do Carmo JR, Guilherme LJ, Alves F, AGT M, Guimaraes IC, Queiroz F, Pimenta CJ (2014) Optimization of alkaline pretreatment of coffee pulp for production of bioethanol. Biotechnol Prog 30(2):451–461. https://doi.org/10.1002/btpr.1856

    Article  CAS  PubMed  Google Scholar 

  41. Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  PubMed  Google Scholar 

  42. Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41–60. https://doi.org/10.1385/abab:101:1:41

    Article  CAS  PubMed  Google Scholar 

  43. Montgomery CD (2017) Design and analysis of experiments. Wiley, Hoboken, pp 491–584

    Google Scholar 

  44. Gutiérrez PH, De La Vara SR (2008) Design and analysis of experiments, 2nd edn. McGraw-Hill, New York, pp 384–421

    Google Scholar 

  45. Ortiz-Zamora O, Cortés-García R, Ramírez-Lepe M, Gómez-Rodríguez J, Aguilar-Uscanga MG (2009) Isolation and selection of ethanol-resistant and osmotolerant yeasts from regional agricultural sources in Mexico. J Food Process Eng 32(5):775–786. https://doi.org/10.1111/j.1745-4530.2008.00244.x

    Article  Google Scholar 

  46. Partida-Sedas G, Montes-García N, Carbaja-Zarrabal O, López-Zamora L, Gómez-Rodríguez J, Aguilar-Uscanga MG (2017) Optimization of hydrolysis process to obtain fermentable sugars from sweet sorghum bagasse using a Box–Behnken design. Sugar Tech 19:317–325. https://doi.org/10.1007/s12355-016-0461-y

    Article  CAS  Google Scholar 

  47. Morando LEN, Gómez CXD, López-Zamora L, Aguilar-Uscanga MG (2014) Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology. Biomass Con Bioref 4:15–23. https://doi.org/10.1007/s13399-013-0091-5

    Article  CAS  Google Scholar 

  48. Díaz-Nava LE, Montes-García N, Domínguez JM, Aguilar-Uscanga MG (2017) Effect of carbón sources on the growth and etanol production of native yeast Pichia kudriavzevii ITV-S42 isolated from sweet sorghum juice. Bioprocess Biosyst Eng 40:1069–1077. https://doi.org/10.1007/s00449-017-1769-z

    Article  CAS  PubMed  Google Scholar 

  49. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2010) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (TP-510-42618)

  50. Ulloa RJB, Verreth JAJ, van Weerd JH, Huisman EA (2002) Effect of different chemical treatments on nutritional and antinutritional properties of coffee pulp. Anim Feed Sci Technol 99:195–204. https://doi.org/10.1016/S0377-8401(02)00050-0

    Article  Google Scholar 

  51. Elias LG (1978) Composition of coffee pulp and other sub-products. In: Braham JE, Bressani R (eds) Coffee pulp composition, technology and use. CIID: INCAP pp 19–30

  52. de Carvalho OF, Srinivas K, Helms GL, Isern NG, Cort JR, Gonçalves AR, Ahring BK (2018) Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresour Technol 257:172–180. https://doi.org/10.1016/j.biortech.2018.01.041

    Article  CAS  Google Scholar 

  53. Salmones D, Mata G, Waliszewski KN (2005) Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation. Bioresour Technol 96:537–544. https://doi.org/10.1016/j.biortech.2004.06.019

    Article  CAS  PubMed  Google Scholar 

  54. Navya PN, Pushpa SM (2013) Production, statistical optimization and application of endoglucanase from Rhizopus stolonifer utilizing coffee husk. Bioprocess Biosyst Eng 36(8):1115–1123. https://doi.org/10.1007/s00449-012-0865-3

    Article  CAS  PubMed  Google Scholar 

  55. Bekalo SA, Reinhardt HW (2010) Fibers of coffee husk and hulls for the production of particleboard. Mater Struct 43(8):1049–1060. https://doi.org/10.1617/s11527-009-9565-0

    Article  CAS  Google Scholar 

  56. Castañón-Rodríguez JF, Portilla-Arias JA, Aguilar-Uscanga BR, Aguilar-Uscanga MG (2015) Effects of oxygen and nutrients on xylitol and ethanol production in sugarcane bagasse hydrolyzates. Food Sci Biotechnol 24:1381–1389 (2015) https://doi.org/10.1007/s10068-015-0177-x

  57. Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels 1:16. https://doi.org/10.1186/1754-6834-1-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dessie W, Zhu J, Xin F, Zhang W, Jlang Y, Wu H, Ma H, Jlang M (2018) Bio-succinic acid production from coffee husk treated with thermochemical and fungal hydrolysis. Bioprocess Biosyst Eng 41(10):1461–1470. https://doi.org/10.1007/s00449-018-1974-4

    Article  CAS  PubMed  Google Scholar 

  59. Dadi D, Beyene A, Simoens K, Soares J, Demeke MM, Thevelein J, Bernaerts K, Luis P, Van der Bruggen B (2018) Valorization of coffee byproducts for bioethanol production using lignocellulosic yeast fermentation and pervaporation. Int J Environ Sci Technol 15:821–832. https://doi.org/10.1007/s13762-017-1440-x

    Article  CAS  Google Scholar 

  60. G. Urbaneja, J. Ferrer, G. Paez, L. Arenas G. Colina 1996, Acid hydrolysis and carbohydrates characterization of coffee pulo WERC, pp 1041-1044. https://fdocuments.in/document/acid-hydrolysis-and-carbohydrates-characterization-of-coffee-pulp.html. Accessed 25 Aug 2020

  61. Parajó JC, Domínguez H, Domínguez JM (1998) Biotechnological production of xylitol. Part 3: operation in culture media made from lignocellulose hydrolysates. Bioresour Technol 66(1):25–40. https://doi.org/10.1016/S0960-8524(98)00037-6

    Article  Google Scholar 

  62. Niglio S, Procentese A, Russo ME, Sannia G, Marzocchella A (2019) Combined pretreatments of coffee silverskin to enhance fermentable sugar yield. Biomass Conv Bioref:1–9. https://doi.org/10.1007/s13399-019-00498-y

  63. Xu JL, Cheng JJ, Sharma RR, Burns JC (2010) Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuel 24:2113–2119. https://doi.org/10.13031/2013.27046

    Article  CAS  Google Scholar 

  64. Wang Z, Cheng JJ (2011) Lime pretreatment of coastal Bermuda grass for bioethanol production. Energy Fuel 25:1830–1836. https://doi.org/10.1021/ef2000932

    Article  CAS  Google Scholar 

  65. Silverstein RA, Chen Y, Sharma-Shivappa RR, Boyette MD, Osborne JA (2007) A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresour Technol 98(16):3000–3011. https://doi.org/10.1016/j.biortech.2006.10.022

    Article  CAS  PubMed  Google Scholar 

  66. Carvalheiro F, Duarte LC, Girio FM (2008) Hemicellulose biorefineries: a review on biomass pretreatments. J Sci Ind Res 67:849–864. http://hdl.handle.net/10400.9/791. Accessed 27 Aug 2020

  67. Rabelo SC, Fonseca NAA, Andrade RR, Filho RM, Costa AC (2011) Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide. Biomass Bioenergy 35(7):2600–2607. https://doi.org/10.1016/j.biombioe.2011.02.042

    Article  CAS  Google Scholar 

  68. Scully DS, Jaiswal AK, Abu-Ghannam N (2016) An investigation into spent coffee waste as a renewable source of bioactive compounds and industrially important sugars. Bioeng 3(4):1–13. https://doi.org/10.3390/bioengineering3040033

    Article  CAS  Google Scholar 

  69. Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Jonsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugar cane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzym Microb Technol 31(3):274–282. https://doi.org/10.1016/S0141-0229(02)00112-6

    Article  CAS  Google Scholar 

  70. Mussatto SI, MacDAHo EMS, Carneiro LM, Teixeira JA (2012) Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Appl Energy 92(1):763–768. https://doi.org/10.1016/j.apenergy.2011.08.020

    Article  CAS  Google Scholar 

  71. Wang L, Luo Z, Shahbazi A (2013) Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Ind Crop Prod 42:280–291. https://doi.org/10.1016/j.indcrop.2012.06.005

    Article  CAS  Google Scholar 

  72. Kleingesinds EK, Jose HMA, Brumano LP, Silva-Fernandes T, Rodrígues DJ, Rodrígues RCLB (2018) Intensification of bioethanol production by using Tween 80 to enhance dilute acid pretreatment and enzymatic saccharification of corncob. Ind Crop Prod 124(1):166–176. https://doi.org/10.1016/j.indcrop.2018.07.037

    Article  CAS  Google Scholar 

  73. Govumoni SP, Koti S, Kothagouni SY, Venkateshwar S, Linga VR (2013) Evaluation of pretratment methods for enzymatic saccharification of wheat straw for bioethanol production. Carbohydr Polym 91(2):646–650. https://doi.org/10.1016/j.carbpol.2012.08.019

    Article  CAS  PubMed  Google Scholar 

  74. Sathendra ER, Baskar G, Praveenkumar R, Gnansounou E (2019) Bioethanol production from palm wood using Trichoderma reesei and Kluveromyces marxianus. Bioresour Technol 271(1):345–352. https://doi.org/10.1016/j.biortech.2018.09.134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Bioengineering laboratory of the Veracruz Institute of Technology for the access to its facilities to carry out experimental tests, and the critical reading of Patricia Margaret Hayward-Jones, M Sc, and Dulce María Barradas-Dermitz, M Sc.

Funding

The authors also wish to thank SAGARPA-CONACyT for financing the project entitled “Production of 2nd generation bioethanol, from agroindustrial waste and enzymes obtained from autochthonous microorganisms”, No. 291143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. López-Zamora.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Martínez, J., Aguilar-Uscanga, M.G., Bolaños-Reynoso, E. et al. Optimization of Chemical Pretreatments Using Response Surface Methodology for Second-Generation Ethanol Production from Coffee Husk Waste. Bioenerg. Res. 14, 815–827 (2021). https://doi.org/10.1007/s12155-020-10197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10197-6

Keywords

Profiles

  1. L. López-Zamora