Cultivation of Microalgae in Media Added of Emergent Pollutants and Effect on Growth, Chemical Composition, and Use of Biomass to Enzymatic Hydrolysis

Abstract

The objective of this study was to determine the influence of various concentrations of emerging pollutants (EPs) on growth, cell composition, and enzymatic hydrolysis of biomass. The microalgae used were Spirulina platensis LEB-52, Chlorella homosphaera, and Scenedesmus obliquus. The EPs used were paracetamol, diazepam, fluoxetine, acetylsalicylic acid, and caffeine, added to the cultures in concentrations ranging from 1 to 100 mg L−1. The tests were carried out in closed 150-mL Erlenmeyer bioreactors, containing standard medium from each microalga culture. Cell concentrations were determined every 24 h using optical density. Culture continued for 20 days. At the end of the growth, biomass was collected and used to measure carbohydrates, proteins, and enzymatic hydrolysis, to determine possible changes due to the presence of EPs. In general, microalgae resisted concentrations of up to 100 mg L−1 of paracetamol, acetylsalicylic acid, and caffeine, 30 mg L−1 of diazepam, and 1 mg L−1 of fluoxetine. S. obliquus was the most resistant strain, followed by C. homosphaera and S. platensis LEB-52 being less resistant. Acetylsalicylic acid and caffeine influenced the content of carbohydrates and proteins in biomass, reaching values ​above 35% of carbohydrates for S. platensis LEB-52 and above 66% of proteins for S. obliquus. There was no influence of EPs in the enzymatic hydrolysis processes. Microalgae showed resistance to EP concentrations, thereby emerging as a promising wastewater bioremediation technology. These high levels of carbohydrates are of great value because they can be used in the production of bioethanol.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    García-Galán MJ, Arashiro L, Santos LH, Insa S, Rodríguez-Mozaz S, Barceló D, Ferrer I, Garfi M (2019) Fate of priority pharmaceuticals and their main metabolites and transformation products in microalgae-based wastewater treatment systems. J Hazard Mater 390:121771. https://doi.org/10.1016/j.jhazmat.2019.121771

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HM (2019) Emerging contaminants of high concern and their enzyme-assisted biodegradation–a review. Environ Int 124:336–353. https://doi.org/10.1016/j.envint.2019.01.011

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Rasheed T, Bilal M, Nabeel F, Adeel M, Iqbal HM (2019) Environmentally-related contaminants of high concern: potential sources and analytical modalities for detection, quantification, and treatment. Environ Int 122:52–66. https://doi.org/10.1016/j.envint.2018.11.038

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Tolboom SN, Carrillo-Nieves D, de Jesús R-AM, de la Cruz QR, Barceló D, Iqbal H, Parra-Saldivar R (2019) Algal-based removal strategies for hazardous contaminants from the environment–a review. Sci Total Environ 665:358–366. https://doi.org/10.1016/j.scitotenv.2019.02.129

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Kang J, Duan X, Wang C, Sun H, Tan X, Tade MO, Wang S (2018) Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chem Eng J 332:398–408. https://doi.org/10.1016/j.cej.2017.09.102

    Article  CAS  Google Scholar 

  6. 6.

    Bollmann AF, Seitz W, Prasse C, Lucke T, Schulz W, Ternes T (2016) Occurrence and fate of amisulpride, sulpiride, and lamotrigine in municipal wastewater treatment plants with biological treatment and ozonation. J Hazard Mater 320:204–215. https://doi.org/10.1016/j.jhazmat.2016.08.022

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Zhou H, Li X, Xu G, Yu H (2018) Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature. Sci Total Environ 643:225–237. https://doi.org/10.1016/j.scitotenv.2018.06.100

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Pei R, Kim SC, Carlson KH, Pruden A (2006) Effect of river landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res 40(12):2427–2435. https://doi.org/10.1016/j.watres.2006.04.017

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Brookes JD, Carey CC, Hamilton DP, Ho L, van der Linden L, Renner R, Rigosi A (2014) Emerging challenges for the drinking water industry. Environ Sci Technol 48:2099–2101. https://doi.org/10.1021/es405606t

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Gojkovic Z, Lindberg RH, Tysklind M, Funk C (2019) Northern green algae have the capacity to remove active pharmaceutical ingredients. Ecotoxicol Environ Saf 170:644–656. https://doi.org/10.1016/j.ecoenv.2018.12.032

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Puckowski A, Mioduszewska K, Lukaszewicz P, Borecka M, Caban M, Maszkowska J, Stepnowski P (2016) Bioaccumulation and analytics of pharmaceutical residues in the environment: a review. J Pharm Biomed Anal 127:232–255. https://doi.org/10.1016/j.jpba.2016.02.049

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Wang J, Wang S (2016) Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: a review. J Environ Manag 182:620–640. https://doi.org/10.1016/j.jenvman.2016.07.049

    Article  CAS  Google Scholar 

  13. 13.

    Chtourou M, Mallek M, Dalmau M, Mamo J, Santos-Clotas E, Salah AB, Walha K, Salvadó V, Monclús H (2018) Triclosan, carbamazepine and caffeine removal by activated sludge system focusing on membrane bioreactor. Process Saf Environ Prot 118:1–9. https://doi.org/10.1016/j.psep.2018.06.019

    Article  CAS  Google Scholar 

  14. 14.

    Taheran M, Brar SK, Verma M, Surampalli RY, Zhang TC, Valéro JR (2016) Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci Total Environ 547:60–77. https://doi.org/10.1016/j.scitotenv.2015.12.139

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Khan NA, Khan SU, Ahmed S, Farooqi IH, Yousefi M, Mohammadi AA, Changani F (2020) Recent trends in disposal and treatment technologies of emerging-pollutants-a critical review. TrAC Trends Anal Chem 122:115744. https://doi.org/10.1016/j.trac.2019.115744

    Article  CAS  Google Scholar 

  16. 16.

    Birben NC, Bekbolet M (2019) Role of emerging contaminants on solar photocatalytic treatment of organic matter in reverse osmosis concentrate. Catal Today 326:101–107. https://doi.org/10.1016/j.cattod.2018.10.048

    Article  CAS  Google Scholar 

  17. 17.

    Geiger E, Hornek-Gausterer R, Saçan MT (2016) Single and mixture toxicity of pharmaceuticals and chlorophenols to freshwater algae Chlorella vulgaris. Ecotoxicol Environ Saf 129:189–198. https://doi.org/10.1016/j.ecoenv.2016.03.032

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Gentili FG, Fick J (2017) Algal cultivation in urban wastewater: an efficient way to reduce pharmaceutical pollutants. J Appl Phycol 29:255–262. https://doi.org/10.1007/s10811-016-0950-0

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Xiong JQ, Kurade MB, Jeon BH (2018) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36:30–44. https://doi.org/10.1016/j.tibtech.2017.09.003

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Wilt A, Butkovskyi A, Tuantet K, Leal LH, Fernandes TV, Langenhoff A, Zeeman G (2016) Micropollutant removal in an algal treatment system fed with source separated wastewater streams. J Hazard Mater 304:84–92. https://doi.org/10.1016/j.jhazmat.2015.10.033

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Coimbra RN, Escapa C, Vázquez NC, Noriega-Hevia G, Otero M (2018) Utilization of non-living microalgae biomass from two different strains for the adsorptive removal of diclofenac from water. Water J 10(10):1–11. https://doi.org/10.3390/w10101401

    Article  CAS  Google Scholar 

  22. 22.

    Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2017) Paracetamol and salicylic acid removal from contaminated water by microalgae. J Environ Manag 203:799–806. https://doi.org/10.1016/j.jenvman.2016.06.051

    Article  CAS  Google Scholar 

  23. 23.

    Tripathi R, Gupta A, Thakur IS (2019) An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1. Renew Energy 135:617–625. https://doi.org/10.1016/j.renene.2018.12.056

    Article  CAS  Google Scholar 

  24. 24.

    Matamoros V, Uggetti E, García J, Bayona JM (2016) Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: a laboratory scale study. J Hazard Mater 301:197–205. https://doi.org/10.1016/j.jhazmat.2015.08.050

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Dasan YK, Lam MK, Yusup S, Lim JW, Lee KT (2019) Life cycle evaluation of microalgae biofuels production: effect of cultivation system on energy, carbon emission and cost balance analysis. Sci Total Environ 688:112–128. https://doi.org/10.1016/j.scitotenv.2019.06.181

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Shahid A, Malik S, Zhu H, Xu J, Nawaz MZ, Nawaz S, Alam MA, Mehmood MA (2020) Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci Total Environ 704:135303. https://doi.org/10.1016/j.scitotenv.2019.135303

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585. https://doi.org/10.1016/j.biortech.2019.122585

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Tayeh HNA, Azaizeh H, Gerchman Y (2020) Circular economy in olive oil production–olive mill solid waste to ethanol and heavy metal sorbent using microwave pretreatment. Waste Manag 113:321–328. https://doi.org/10.1016/j.wasman.2020.06.017

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Watanabe A (1960) List of algal strains in collection at the Institute of Applied Microbiology, University of Tokyo. J Gen Appl Microbiol 6(4):283–292. https://doi.org/10.2323/jgam.6.283

    Article  Google Scholar 

  30. 30.

    Zarrouk C (1966) Contribution a l’etude d’une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima (Setch et Gardner) Geitler. Thesis. University of Paris, France

  31. 31.

    Ripka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  32. 32.

    Morais MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol Lett 29:1349–1352. https://doi.org/10.1007/s10529-007-9394-6

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Salla ACV, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV (2016) Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol 209:133–141. https://doi.org/10.1016/j.biortech.2016.02.069

    Article  CAS  Google Scholar 

  34. 34.

    Costa JAV, Colla LM, Duarte Filho P, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18(7):603–607. https://doi.org/10.1023/A:1016822717583

    Article  Google Scholar 

  35. 35.

    Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  36. 36.

    Lowry OH, Rosebrough NJ, Farr AL, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem:265–276

  37. 37.

    Rempel A, Machado T, Treichel H, Colla E, Margarites AC, Colla LM (2018) Saccharification of Spirulina platensis biomass using free and immobilized amylolytic enzymes. Bioresour Technol 263:163–171. https://doi.org/10.1016/j.biortech.2018.04.114

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Astolfi AL, Rempel A, Cavanhi VAF, Alves M, Deamici KM, Colla LM, Costa JAV (2020) Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresour Technol 301:122698. https://doi.org/10.1016/j.biortech.2019.122698

    Article  CAS  Google Scholar 

  39. 39.

    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  40. 40.

    Nunes B, Antunes SC, Santos J, Martins L, Castro BB (2014) Toxic potential of paracetamol to freshwater organisms: a headache to environmental regulators? Ecotoxicol Environ Saf 107:178–185. https://doi.org/10.1016/j.ecoenv.2014.05.027

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Iummato MM, Fassiano A, Graziano M, dos Santos AM, de Molina MDCR, Juárez ÁB (2019) Effect of glyphosate on the growth, morphology, ultrastructure and metabolism of Scenedesmus vacuolatus. Ecotoxicol Environ Saf 172:471–479. https://doi.org/10.1016/j.ecoenv.2019.01.083

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Escapa C, Coimbra RN, Paniagua S, García AI, Otero M (2017) Comparison of the culture and harvesting of Chlorella vulgaris and Tetradesmus obliquus for the removal of pharmaceuticals from water. J Appl Phycol 29(3):1179–1193. https://doi.org/10.1007/s10811-016-1010-5

    Article  CAS  Google Scholar 

  43. 43.

    Wang XX, Zhang TY, Dao GH, Hu HY (2018) Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone. Environ Pollut 241:200–211. https://doi.org/10.1016/j.envpol.2018.05.066

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Destrieux D, Laurent F, Budzinski H, Pedelucq J, Vervier P, Gerino M (2017) Drug residues in urban water: A database for ecotoxicological risk management. Sci Total Environ 609:927–941. https://doi.org/10.1016/j.scitotenv.2017.07.043

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Li Y, Zhang S, Zhang W, Xiong W, Q Y, Hou X, Wang C, Wang P (2019) Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. J Environ Manage 238:442–450. https://doi.org/10.1016/j.jenvman.2019.01.118

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Brooks BW, Foran CM, Richards SM, Weston J, Turner PK, Stanley JK, Solomom RK, Slattery M, La Point TW (2003) Aquatic ecotoxicology of fluoxetine. Toxicol Lett 142(3):169–183. https://doi.org/10.1016/S0378-4274(03)00066-3

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Sehonova P, Svobodova Z, Dolezelova P, Vosmerova P, Faggio C (2018) Effects of waterborne antidepressants on non-target animals living in the aquatic environment: a review. Sci Total Environ 631:789–794. https://doi.org/10.1016/j.scitotenv.2018.03.076

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Chen H, Zha J, Yuan L, Wang Z (2015) Effects of fluoxetine on behavior, antioxidant enzyme systems, and multixenobiotic resistance in the Asian clam Corbicula fluminea. Chem 119:856–862. https://doi.org/10.1016/j.chemosphere.2014.08.062

    Article  CAS  Google Scholar 

  49. 49.

    Martin JM, Bertram MG, Saaristo M, Ecker TE, Hannington SL, Tanner JL, Michelangeli M, O'Bryan KM, Wong BB (2019) Impact of the widespread pharmaceutical pollutant fluoxetine on behaviour and sperm traits in a freshwater fish. Sci Total Environ 650:1771–1778. https://doi.org/10.1016/j.scitotenv.2018.09.294

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Tousova Z, Froment J, Oswald P, Slobodník J, Hilscherova K, Thomas KV, Tollefsen KE, Reid M, Langford K, Blaha L (2018) Identification of algal growth inhibitors in treated waste water using effect-directed analysis based on non-target screening techniques. J Hazard Mater 358:494–502. https://doi.org/10.1016/j.jhazmat.2018.05.031

    Article  PubMed  CAS  Google Scholar 

  51. 51.

    Peters JR, Granek EF (2016) Long-term exposure to fluoxetine reduces growth and reproductive potential in the dominant rocky intertidal mussel, Mytilus californianus. Sci Total Environ 545:621–628. https://doi.org/10.1016/j.scitotenv.2015.12.118

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Neuwoehner J, Escher BI (2011) The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquat Toxicol 101(1):266–275. https://doi.org/10.1016/j.aquatox.2010.10.008

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Papazi A, Karamanli M, Kotzabasis K (2019) Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus- The biodegradation strategy of microalgae. J Biotechnol 296:61–68. https://doi.org/10.1016/j.jbiotec.2019.03.010

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Zarrelli A, DellaGreca M, Iesce MR, Lavorgna M, Temussi F, Schiavone L, Criscuolo E, Parrella A, Previtera L, Isidori M (2014) Ecotoxicological evaluation of caffeine and its derivatives from a simulated chlorination step. Sci Total Environ 470:453–458. https://doi.org/10.1016/j.scitotenv.2013.10.005

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    De Souza MF, Pereira DS, Freitas SP, da Silva Bon EP, Rodrigues MA (2017) Neutral sugars determination in Chlorella: Use of a one-step dilute sulfuric acid hydrolysis with reduced sample size followed by HPAEC analysis. Algal Res 24:130–137. https://doi.org/10.1016/j.algal.2017.03.019

    Article  Google Scholar 

  56. 56.

    Afify AEMM, El Baroty GS, El Baz FK, El Baky HHA, Murad SA (2018) Scenedesmus obliquus: Antioxidant and antiviral activity of proteins hydrolyzed by three enzymes. J Genet Eng Biotechnol 16(2):399–408. https://doi.org/10.1016/j.jgeb.2018.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M (2014) Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenergy 66:159–167. https://doi.org/10.1016/j.biombioe.2014.02.034

    Article  CAS  Google Scholar 

  58. 58.

    Surkatti R, Al-Zuhair S (2018) Effect of cresols treatment by microalgae on the cells’ composition. J Water Process Eng 26:250–256. https://doi.org/10.1016/j.jwpe.2018.10.022

    Article  Google Scholar 

  59. 59.

    El-Sheekh MM, Hamouda RA, Nizam AA (2013) Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int Biodeter Biodegr 82:67–72. https://doi.org/10.1016/j.ibiod.2012.12.015

    Article  CAS  Google Scholar 

  60. 60.

    Hamouda RAEF, Sorour NM, Yeheia DS (2016) Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int Biodeter Biodegr 112:128–134. https://doi.org/10.1016/j.ibiod.2016.05.001

    Article  CAS  Google Scholar 

  61. 61.

    Markou G, Angelidaki I, Georgakakis D (2012) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96(3):631–645. https://doi.org/10.1016/j.biortech.2012.05.05

    Article  PubMed  CAS  Google Scholar 

  62. 62.

    Rempel A, Sossella FS, Margarites AC, Astolfi AL, Steinmetz RLR, Kunz A, Treichel H, Colla LM (2019) Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresour Technol 288:121588. https://doi.org/10.1016/j.biortech.2019.121588

    Article  PubMed  CAS  Google Scholar 

  63. 63.

    Li S, Zhao S, Yan S, Qiu Y, Song C, Li Y, Kitamura Y (2019) Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production–a review. Chin J Chem Eng 27:2845–2856. https://doi.org/10.1016/j.cjche.2019.03.028

    Article  CAS  Google Scholar 

  64. 64.

    de Siqueira CJ, Calijuri ML, Ferreira J, Assemany PP, Ribeiro VJ (2020) Microalgae based biofertilizer: A life cycle approach. Sci Total Environ:138138. https://doi.org/10.1016/j.scitotenv.2020.13813842

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luciane Maria Colla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 456 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rempel, A., Nadal Biolchi, G., Farezin Antunes, A.C. et al. Cultivation of Microalgae in Media Added of Emergent Pollutants and Effect on Growth, Chemical Composition, and Use of Biomass to Enzymatic Hydrolysis. Bioenerg. Res. (2020). https://doi.org/10.1007/s12155-020-10177-w

Download citation

Keywords

  • Pharmaceuticals
  • Toxicity
  • Saccharification
  • Wastewater
  • Microalgae chemical composition